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Python is a powerful programming language that’s 
easy to learn and fun to play with. But once you’ve 
gotten a handle on the basics, what do you do next?

Python Playground is a collection of imaginative 
programming projects that will inspire you to use 
Python to make art and music, build simulations of 
real-world phenomena, and interact with hardware 
like the Arduino and Raspberry Pi. You’ll learn to 
use common Python tools and libraries like numpy, 
matplotlib, and pygame to do things like:

• Generate Spirograph-like patterns using parametric 
equations and the turtle module

• Create music on your computer by simulating 
frequency overtones 

• Translate graphical images into ASCII art

• Write an autostereogram program that produces 
3D images hidden beneath random patterns

• Make realistic animations with OpenGL shaders 
by exploring particle systems, transparency, and 
billboarding techniques

• Construct 3D visualizations using data from CT and 
MRI scans

• Build a laser show that responds to music by hooking 
up your computer to an Arduino

Programming shouldn’t be a chore. Have some solid, 
geeky fun with Python Playground.

A B O U T  T H E  A U T H O R

Mahesh Venkitachalam is a software engineer with 
two decades of programming experience. He has 
nurtured a passion for technology since the eighth 
grade, which he channels into his popular electronics 
and programming blog, electronut.in.
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i n t r o d u C t i o n

Welcome to Python Playground! Within 
these pages, you’ll find 14 exciting proj-

ects designed to encourage you to explore 
the world of programming with Python. The 

projects cover a wide range of topics, such as draw-
ing Spirograph-like patterns, creating ASCII art, 
3D rendering, and projecting laser patterns in sync with music. In addition 
to being fun in and of themselves, these projects are designed to be jumping-
off points for you to explore your own ideas by expanding on each of the 
projects.

who Is this Book for?
Python Playground is written for anyone curious about how to use program-
ming to understand and explore ideas. The projects in this book assume that 
you know basic Python syntax and basic programming concepts and that 
you’re familiar with high-school level mathematics. I’ve done my best to 
explain in detail the math you need for all projects.
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xx   Introduction

This book is not intended to be your first book on Python. I won’t walk 
you through the basics. I will, however, show you how to use Python to solve a 
variety of real-world problems in a series of nontrivial projects. As you work 
through the projects, you’ll explore the nuances of the Python program-
ming language and learn how to work with some popular Python libraries. 
But perhaps even more importantly, you’ll learn how to break down a prob-
lem into parts, develop an algorithm to solve that problem, and then imple-
ment a solution from the ground up using Python. It can be difficult to solve 
real-world problems because they are often open-ended and require exper-
tise in various domains. But Python offers the tools to facilitate problem-
solving. Overcoming difficulties and finding solutions to real problems is 
the most important part of your journey on the way to becoming an expert 
programmer.

what’s in this Book?
Let’s take a quick tour through the chapters in this book. 

Part I: Warming Up
Chapter 1 will show you how to parse iTunes playlist files and gather use-
ful information from them, such as track lengths and common tracks. In 
Chapter 2, we use parametric equations and Turtle graphics to draw curves 
like the ones generated by a Spirograph.

Part II: Simulating Life
This part is about using mathematical models to simulate phenomena. 
In Chapter 3, you’ll learn how to implement the Conway’s Game of Life 
algorithm to generate dynamic patterns that create other patterns as a sort 
of simulation of artificial life. Chapter 4 will show you how to create real-
istic plucked string sounds using the Karplus-Strong algorithm. Then, in 
Chapter 5, you’ll learn how to implement the Boids algorithm to simulate 
the flocking behavior of birds. 

Part III: Fun with Images
This part will introduce you to reading and manipulating 2D images with 
Python. Chapter 6 shows you how to create ASCII art from an image. In 
Chapter 7, you’ll make a photomosaic, and in Chapter 8, you’ll learn how 
to generate autostereograms, which create the illusion of a 3D image.

Part IV: Enter 3D
The projects in this part use the OpenGL 3D graphics library. Chapter 9 
introduces the basics of using OpenGL to create simple 3D graphics. In 
Chapter 10, you’ll create a particle simulation—a fountain of fireworks that 
uses math and OpenGL shaders for computation and rendering. Then in 
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Chapter 11, you’ll use OpenGL shaders to implement a volume ray casting 
algorithm to render volumetric data—a technique commonly used for medi-
cal imaging such as MRI and CT scans.

Part V: Hardware Hacking
In the final part, you’ll use Python to explore the Arduino microcontroller 
and the Raspberry Pi. In Chapter 12, you’ll use the Arduino to read and 
plot sensor data from a simple circuit. In Chapter 13, you’ll combine Python 
with an Arduino to control two rotating mirrors and a laser to produce a 
laser show that responds to sound. In Chapter 14, you’ll use the Raspberry 
Pi to build a web-based weather monitoring system.

why Python?
Python is an ideal language for exploring programming. As a multi paradigm 
language, it provides you with a lot of flexibility in how you structure your 
programs. You can use Python as a scripting language to simply execute 
code, as a procedural language to organize your program into a collection 
of functions which call each other, or as an object-oriented language that uses 
classes, inheritance, and modules to build up a hierarchy. This flexibility 
allows you to choose the programming style most suited to a particular 
project.

When you develop using a more traditional language like C or C++, you 
have to compile and link your code before you can run it. With Python, you 
can run it directly after editing. (Under the hood, Python compiles your 
code into an intermediate bytecode that is then run by the Python inter-
preter, but these processes are transparent to you, the user.) In practice, 
the process of modifying and running your code over and over is much less 
cumbersome with Python. 

Furthermore, the Python interpreter is a very handy tool for checking 
code syntax, getting help with modules, doing quick computations, and 
even testing code under development. For example, when I write Python 
code, I keep three windows open: a text editor, a shell, and a Python inter-
preter. As I develop code in the editor, I import my functions or classes into 
the interpreter and test them as I go.

Python has a very small set of simple and powerful data structures. If 
you already understand strings, lists, tuples, dictionaries, list comprehen-
sions, and basic control structures such as for and while loops, you’re off 
to a great start. Python’s succinct and expressive syntax makes it easy to do 
complex operations with just a few lines of code. And once you’re familiar 
with Python’s built-in and third-party modules, you’ll have an arsenal of 
tools to tackle real problems like the ones covered on this book. There are 
standard ways to call C/C++ code from Python and vice versa, and because 
you can find libraries to do almost anything in Python, it’s easy to com-
bine Python with other language modules in bigger projects. This is why 
Python is considered a great glue language—it makes it easy to combine 
diverse software components. The hardware projects at the end of this 
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book demonstrate how Python can work side by side with Arduino code and 
JavaScript. Real software projects often use a mix of software technologies, 
and Python fits very well into such layered architectures.

The following example demonstrates the ease of working with Python. 
While developing code for the Raspberry Pi weather monitor in Chapter 
14, I wrote this string looking at the oscilloscope output from the tempera-
ture/humidity sensor:

0011011100000000000110100000000001010001

Since I don’t speak binary (especially at 7 am on a Sunday morning), 
I fired up the Python interpreter and entered:

>>> str = '0011011100000000000110100000000001010001'
>>> len(str)
40
>>> [int(str[i:i+8], 2) for i in range(0, 40, 8)]
[55, 0, 26, 0, 81]

This code splits up the 40-bit string into five 8-bit integers, which I can 
actually interpret. The data above is decoded as a 55.0 percent humidity 
reading at a temperature of 26.0 degrees centigrade, and the checksum  
is 55 + 26 = 81. 

This example demonstrates the practical use of the Python interpreter 
as a very power calculator. You don’t need to write a complete program to do 
quick computations; just open up the interpreter and get going. This is just 
one of the many reasons why I love Python, and why I think you will too.

Python Versions
This book was built with Python 3.3.3, but all code is compatible with 
Python 2.7.x and 3.x.

The Code in This Book
I’ve done my best throughout this book to walk you through the code for 
each project in detail, piece by piece. You can either enter the code yourself 
or download the complete source code (using the Download Zip option) for 
all programs in the book at https://github.com/electronut/pp/.

You’ll find several exciting projects in the following pages. I hope you 
have as much fun playing with them as I had creating them. And don’t forget 
to explore further with the exercises presented at the end of each project. 
I wish you many happy hours of programming with Python Playground!

https://github.com/electronut/pp/
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w a r m i n g  u P

“In the beginner’s mind there are many possibilities;  
in the expert’s mind there are few.”  

—Shunryu Suzuki
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P a r s i n g  i t u n e s  P l a y l i s t s

Our Python expedition begins with a 
 simple project that finds duplicate music 

tracks in iTunes playlist files and plots vari-
ous statistics such as track lengths and ratings. 

You’ll start by taking a look at the iTunes playlist for-
mat and then learn how to extract information from 
these files using Python. To plot this data, you’ll use 
the matplotlib library.

In this project, you will learn the about the following topics:

•	 XML and property list (p-list) files

•	 Python lists and dictionaries

•	 Using Python set objects

•	 Using numpy arrays

•	 Histograms and scatter plots
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•	 Making simple plots with the matplotlib library

•	 Creating and saving data files

anatomy of the itunes Playlist file
The information in an iTunes library can be exported into playlist files. 
(Choose File4Library4Export Playlist in iTunes.) The playlist files are 
written in Extensible Markup Language (XML), a text-based language 
designed to represent text-based information hierarchically. It consists of 
a tree-like collection of user-defined tags in the form <myTag>, each of which 
can have attribute and child tags with additional information. 

When you open a playlist file in a text editor, you’ll see something like 
this abbreviated version:

<?xml version="1.0" encoding="UTF-8"?>
u <!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www

.apple.com/DTDs/PropertyList-1.0.dtd">
v <plist version="1.0">
w <dict>
x <key>Major Version</key><integer>1</integer>

    <key>Minor Version</key><integer>1</integer>
    --snip--

y     <key>Tracks</key>
    <dict>
        <key>2438</key>
        <dict>
        <key>Track ID</key><integer>2438</integer>
        <key>Name</key><string>Yesterday</string>
        <key>Artist</key><string>The Beatles</string>
        <key>Composer</key><string>Lennon [John], McCartney [Paul]</string>
        <key>Album</key><string>Help!</string>
    </dict>
    --snip--
</dict>

z     <key>Playlists</key>
    <array>
        <dict>
            <key>Name</key><string>Now</string>
            <key>Playlist ID</key><integer>21348</integer>
            --snip--
            <array>
                <dict>
                    <key>Track ID</key><integer>6382</integer>
                </dict>
                --snip--
            </array>
        </dict>
    </array>
</dict>
</plist> 
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The <dict> and <key> tags relate to the way a property list (p-list) 
file represents objects as dictionaries, which are data structures that link 
a key with a value to make it easy to find a corresponding value. P-list 
files use dictionaries of dictionaries, where values associated with a key in 
one dictionary are often themselves yet another dictionary (or even a list 
of dictionaries).

The <xml> tag identifies the file as XML. Following this opening tag, 
a document type declaration (DTD) defines the structure of the XML docu-
ment u. As you can see, Apple defines this structure at a uniform resource 
locator (URL) visible in the tag. 

At v, the file declares the top-level <plist> tag whose only child element 
is the dictionary <dict> w. This dictionary contains various keys including, 
at x, Major Version, Minor Version, and so on, but you’re interested in the Tracks 
key at y. Notice that the value corresponding to this key is also a dictionary, 
which maps an integer track ID to another dictionary containing elements 
such as Name, Artist, and so on. Each track in a music collection has a unique 
track ID key. 

The playlist order is defined at z by Playlists, a child of the top-level 
dictionary.

requirements
In this project, we’ll use the built-in module plistlib to read the playlist 
files. We’ll also use the matplotlib library for plotting and numpy arrays to 
store data. 

the code
The goals in this project are to find duplicates in your music collection, 
identify tracks shared between playlists, plot the distribution of track dura-
tions, and graph the relationship between song ratings and length.

As your music collection grows, you’ll invariably end up with dupli-
cate songs. To identify duplicates, search the names in the dictionary associ-
ated with the Tracks key (discussed earlier) for duplicates and use track 
length as an additional criterion to detect duplicates, since a track with 
the same name but a different length is likely unique. 

To find tracks shared between two or more playlists, you’ll export the 
collections as playlist files, gather the track names for each playlist, and 
compare them as sets to discover common tracks by finding the intersection 
between sets. 

While gathering data from your music collection, you’ll create a couple 
of plots with the powerful matplotlib (http://matplotlib.org/) plotting pack-
age developed by the late John Hunter. You’ll draw a histogram to show 
the distribution of track durations and a scatter plot to compare song rat-
ings with song length. 

To see the full project code, skip ahead to “The Complete Code” on 
page 11.

http://matplotlib.org/
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Finding Duplicates
You’ll start by finding duplicate tracks with the findDuplicates() method, as 
shown here:

def findDuplicates(fileName):
    print('Finding duplicate tracks in %s...' % fileName)
    # read in a playlist

u     plist = plistlib.readPlist(fileName)
    # get the tracks from the Tracks dictionary

v     tracks = plist['Tracks']
    # create a track name dictionary

w     trackNames = {}
    # iterate through the tracks

x     for trackId, track in tracks.items():
        try:

y             name = track['Name']
            duration = track['Total Time']
            # look for existing entries

z             if name in trackNames:
                # if a name and duration match, increment the count
                # round the track length to the nearest second

{                 if duration//1000 == trackNames[name][0]//1000:
                    count = trackNames[name][1]

|                     trackNames[name] = (duration, count+1)
            else:
                # add dictionary entry as tuple (duration, count)

}                 trackNames[name] = (duration, 1)
        except:
            # ignore
            pass

At u, the readPlist() method takes a p-list file as input and returns the 
top-level dictionary. You access the Tracks dictionary at v, and at w, you 
create an empty dictionary to keep track of duplicates. At x, you begin 
iterating through the Tracks dictionary using the items() method, which is 
commonly used in Python to retrieve both the key and the value of a dic-
tionary as you iterate through it. 

At y, you retrieve the name and duration of each track in the diction-
ary. You check to see whether the current track name already exists in the 
dictionary being built by using the in keyword z. If so, the program checks 
whether the track lengths of the existing and newly found tracks are identi-
cal { by dividing the track length of each by 1,000 with the // operator to 
convert milliseconds to seconds and then rounding to the nearest second. 
(Of course, this means that two tracks that differ in length only by milli-
seconds are considered to be the same length.) If you determine that the 
two track lengths are equal, you get the value associated with name, which 
is the tuple (duration, count), and increment count at |. If this is the first 
time the program has come across the track name, it creates a new entry 
for it, with a count of 1 }.
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You enclose the body of the code’s main for loop in a try block because 
some music tracks may not have the track name defined. In that case, you 
skip the track and include only pass (which does nothing) in the except 
section.

Extracting Duplicates
To extract duplicates, you use this code:

    # store duplicates as (name, count) tuples
u     dups = []

    for k, v in trackNames.items():
v         if v[1] > 1:

            dups.append((v[1], k))
    # save duplicates to a file

w     if len(dups) > 0:
        print("Found %d duplicates. Track names saved to dup.txt" % len(dups))
    else:
        print("No duplicate tracks found!")

x     f = open("dups.txt", "w")
    for val in dups:

y         f.write("[%d] %s\n" % (val[0], val[1]))
    f.close()

At u, you create an empty list to hold the duplicates. Next, you iterate 
through the trackNames dictionary, and if count (accessed with v[1] because 
it’s the second element in the tuple) is greater than 1, you append a tuple 
with (name, count) to the list. At w, the program prints information about 
what it has found and then saves that information to a file using the open() 
method x. At y, you iterate through the dups list, writing out the dupli-
cate entries. 

Finding Tracks Common Across Multiple Playlists
Now let’s look at how you find music tracks that are common across mul-
tiple playlists:

def findCommonTracks(fileNames):
    # a list of sets of track names

u     trackNameSets = []
    for fileName in fileNames:
        # create a new set

v         trackNames = set()
        # read in playlist

w         plist = plistlib.readPlist(fileName)
        # get the tracks
        tracks = plist['Tracks']
        # iterate through the tracks
        for trackId, track in tracks.items():
            try:
                # add the track name to a set

x                 trackNames.add(track['Name'])

www.allitebooks.com

http://www.allitebooks.org
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            except:
                # ignore
                pass
        # add to list

y         trackNameSets.append(trackNames) 
    # get the set of common tracks

z     commonTracks = set.intersection(*trackNameSets)
    # write to file
    if len(commonTracks) > 0:

{         f = open("common.txt", "w")
        for val in commonTracks:
            s = "%s\n" % val

|             f.write(s.encode("UTF-8"))
        f.close()
        print("%d common tracks found. "
              "Track names written to common.txt." % len(commonTracks))
    else:
        print("No common tracks!")

First, you pass a list of playlist filenames to findCommonTracks(), which 
 creates an empty list u to store a set of objects created from each play list. The 
program then iterates through each file in the list. For each file, you  create 
a Python set object called trackNames v; then as in findDuplicates(), you use 
plistlib to read in the file w and get the Tracks dictionary. Next, you iter-
ate through each track in this dictionary and add the trackNames object x. 
Once the program has finished with all tracks in a file, it adds this set to 
 trackNameSets y.

At z, you use the set.intersection() method to get the set of tracks that 
are common among the sets. (You use the Python * operator to unpack the 
argument lists.) If the program finds any tracks that are common among 
sets, it writes the track names to a file. At {, you open the file, and the two 
lines that follow do the actual writing. Use encode() to format the output 
and to ensure that any Unicode characters are handled correctly |. 

Collecting Statistics
Next, use the plotStats() method to collect statistics for the track names:

def plotStats(fileName):
    # read in a playlist

u     plist = plistlib.readPlist(fileName)
    # get the tracks from the playlist
    tracks = plist['Tracks']
    # create lists of song ratings and track durations

v     ratings = []
    durations = []
    # iterate through the tracks
    for trackId, track in tracks.items():
        try:

w             ratings.append(track['Album Rating'])
            durations.append(track['Total Time'])
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        except:
            # ignore
            pass

    # ensure that valid data was collected
x     if ratings == [] or durations == []:

        print("No valid Album Rating/Total Time data in %s." % fileName)
        return

The goal here is to gather ratings and track durations and then do 
some plotting. At u and in the lines that follow, you read the playlist file 
and get access to the Tracks dictionary. Next, you create two empty lists to 
store ratings and durations v. (Ratings in iTunes playlists are stored as 
integers in the range [0, 100]). Iterating through the tracks, you get and 
append the ratings and durations to the appropriate lists at w. Finally, the 
sanity check at x makes sure you collected valid data from the playlist file. 

Plotting Your Data
You’re now ready to plot some data.

    # scatter plot
u     x = np.array(durations, np.int32)

    # convert to minutes
v     x = x/60000.0
w     y = np.array(ratings, np.int32)
x     pyplot.subplot(2, 1, 1)
y     pyplot.plot(x, y, 'o')
z     pyplot.axis([0, 1.05*np.max(x), -1, 110])
{     pyplot.xlabel('Track duration')
|     pyplot.ylabel('Track rating')

    # plot histogram
    pyplot.subplot(2, 1, 2)

}     pyplot.hist(x, bins=20)
    pyplot.xlabel('Track duration')
    pyplot.ylabel('Count')

    # show plot
~     pyplot.show()

At u, you put the data for the track durations into a 32-bit integer 
array using numpy.array() (imported as np in the code); then at v, you use 
numpy to apply an operation to every element in the array. In this case, 
you’re converting the duration in milliseconds to seconds by dividing  
each value by 60 × 1000. You store the track ratings in another numpy array,  
y, at w. 

Use matplotlib to draw two plots in the same figure. At x, the argu-
ments to subplot()—namely, (2, 1, 1)—tell matplotlib that the figure 
should have two rows (2) and one column (1) and that the next plot should 
go in the first row (1). You create the plot at y by calling plot(), and the 
o tells  matplotlib to use circles to represent the data. 



10   Chapter 1

At z, you set slightly inflated ranges for both the x-axis and y-axis to 
produce some padding between the plot and the axes. At { and |, you set 
the text for the x-axis and y-axis labels. 

Now you plot the duration histogram in the second row of the same fig-
ure using the matplotlib method hist() }. The bins argument sets the num-
ber of data partitions, each of which is used for adding counts in that range. 
Finally, you call show() ~, and matplotlib displays your beautiful graph in a 
new window.

Command Line Options
Now let’s look at the main() method of the program to see how it handles 
command line arguments:

def main():
    # create parser
    descStr = """
    This program analyzes playlist files (.xml) exported from iTunes.
    """

u     parser = argparse.ArgumentParser(description=descStr)
    # add a mutually exclusive group of arguments

v     group = parser.add_mutually_exclusive_group()

    # add expected arguments
w     group.add_argument('--common', nargs='*', dest='plFiles', required=False)
x     group.add_argument('--stats', dest='plFile', required=False)
y     group.add_argument('--dup', dest='plFileD', required=False)

    # parse args
z     args = parser.parse_args()

    if args.plFiles:
        # find common tracks
        findCommonTracks(args.plFiles)
    elif args.plFile:
        # plot stats
        plotStats(args.plFile)
    elif args.plFileD:
        # find duplicate tracks
        findDuplicates(args.plFileD)
    else:

{         print("These are not the tracks you are looking for.")

Most projects in this book have command line arguments. Rather than 
trying to parse them by hand and creating a mess, delegate this mundane 
task to Python’s argparse module. At u, you create an ArgumentParser object 
for this purpose. The program can be used to do three different things 
such as find common tracks among playlists, plot statistics, or find duplicate 
tracks in a playlist. However, it can do only one of them at a time, and you 
don’t want it to crash if the user decides to specify two or more of these 
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options at the same time. The argparse module provides a solution to this 
challenge in the form of mutually exclusive argument groups. At v, you use 
the parser.add_mutually_exclusive_group() method to create such a group. 

At w, x, and y, you specify the command line options mentioned 
 earlier and enter the variable names (args.plFiles, args.plFile, and  
args.plFileD) the parsed values should be stored in. The actual parsing 
is done at z. Once the arguments are parsed, you pass them to the appro-
priate functions,  findCommonTracks(), plotStats(), and findDuplicates(), as 
 discussed earlier in this chapter. 

To see whether an argument was parsed, test the appropriate variable 
name in args. For example, if the user did not use the --common option 
(which finds common tracks among playlists), args.plFiles should be set  
to None after parsing. 

You handle the case in which the user didn’t enter any arguments at {. 

the complete code
Here is the complete program. You can also find the code and some test 
data for this project at https://github.com/electronut/pp/tree/master/playlist/.

import re, argparse
import sys
from matplotlib import pyplot
import plistlib
import numpy as np

def findCommonTracks(fileNames):
    """
    Find common tracks in given playlist files, 
    and save them to common.txt.
    """    
    # a list of sets of track names
    trackNameSets = []
    for fileName in fileNames:
        # create a new set
        trackNames = set()
        # read in playlist
        plist = plistlib.readPlist(fileName)
        # get the tracks
        tracks = plist['Tracks']
        # iterate through the tracks
        for trackId, track in tracks.items():
            try:
                # add the track name to a set
                trackNames.add(track['Name'])
            except:
                # ignore
                pass
        # add to list
        trackNameSets.append(trackNames)    

https://github.com/electronut/pp/tree/master/playlist/
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    # get the set of common tracks
    commonTracks = set.intersection(*trackNameSets)
    # write to file
    if len(commonTracks) > 0:
        f = open("common.txt", 'w')
        for val in commonTracks:
            s = "%s\n" % val
            f.write(s.encode("UTF-8"))
        f.close()
        print("%d common tracks found. "
              "Track names written to common.txt." % len(commonTracks))
    else:
        print("No common tracks!")

def plotStats(fileName):
    """
    Plot some statistics by reading track information from playlist.
    """
    # read in a playlist
    plist = plistlib.readPlist(fileName)
    # get the tracks from the playlist
    tracks = plist['Tracks']
    # create lists of song ratings and track durations
    ratings = []
    durations = []
    # iterate through the tracks
    for trackId, track in tracks.items():
        try:
            ratings.append(track['Album Rating'])
            durations.append(track['Total Time'])
        except:
            # ignore
            pass

    # ensure that valid data was collected
    if ratings == [] or durations == []:
        print("No valid Album Rating/Total Time data in %s." % fileName)
        return

    # scatter plot
    x = np.array(durations, np.int32)
    # convert to minutes
    x = x/60000.0
    y = np.array(ratings, np.int32)
    pyplot.subplot(2, 1, 1)
    pyplot.plot(x, y, 'o')
    pyplot.axis([0, 1.05*np.max(x), -1, 110])
    pyplot.xlabel('Track duration')
    pyplot.ylabel('Track rating')

    # plot histogram
    pyplot.subplot(2, 1, 2)
    pyplot.hist(x, bins=20)
    pyplot.xlabel('Track duration')
    pyplot.ylabel('Count')
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    # show plot
    pyplot.show()

def findDuplicates(fileName):
    """
    Find duplicate tracks in given playlist.
    """
    print('Finding duplicate tracks in %s...' % fileName)
    # read in playlist
    plist = plistlib.readPlist(fileName)
    # get the tracks from the Tracks dictionary
    tracks = plist['Tracks']
    # create a track name dictionary
    trackNames = {}
    # iterate through tracks
    for trackId, track in tracks.items():
        try:
            name = track['Name']
            duration = track['Total Time']
            # look for existing entries
            if name in trackNames:
                # if a name and duration match, increment the count
                # round the track length to the nearest second
                if duration//1000 == trackNames[name][0]//1000:
                    count = trackNames[name][1]
                    trackNames[name] = (duration, count+1)
            else:
                # add dictionary entry as tuple (duration, count)
                trackNames[name] = (duration, 1)
        except:
            # ignore
            pass
    # store duplicates as (name, count) tuples
    dups = []
    for k, v in trackNames.items():
        if v[1] > 1:
            dups.append((v[1], k))
    # save duplicates to a file
    if len(dups) > 0:
        print("Found %d duplicates. Track names saved to dup.txt" % len(dups))
    else:
        print("No duplicate tracks found!")
    f = open("dups.txt", 'w')
    for val in dups:
        f.write("[%d] %s\n" % (val[0], val[1]))
    f.close()

# gather our code in a main() function
def main():
    # create parser
    descStr = """
    This program analyzes playlist files (.xml) exported from iTunes.
    """
    parser = argparse.ArgumentParser(description=descStr)
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    # add a mutually exclusive group of arguments
    group = parser.add_mutually_exclusive_group()

    # add expected arguments
    group.add_argument('--common', nargs='*', dest='plFiles', required=False)
    group.add_argument('--stats', dest='plFile', required=False)
    group.add_argument('--dup', dest='plFileD', required=False)

    # parse args
    args = parser.parse_args()

    if args.plFiles:
        # find common tracks
        findCommonTracks(args.plFiles)
    elif args.plFile:
        # plot stats
        plotStats(args.plFile)
    elif args.plFileD:
        # find duplicate tracks
        findDuplicates(args.plFileD)
    else:
        print("These are not the tracks you are looking for.")

# main method
if __name__ == '__main__':
    main()

running the Program
Here is a sample run of the program:

$ python playlist.py --common test-data/maya.xml test-data/rating.xml 

Here is the output:

5 common tracks found. Track names written to common.txt.
$ cat common.txt 
God Shuffled His Feet
Rubric
Floe
Stairway To Heaven
Pi's Lullaby
moksha:playlist mahesh$ 

Now let’s plot some statistics for the tracks. 

$ python playlist.py --stats test-data/rating.xml

Figure 1-1 shows the output from this sample run.
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Figure 1-1: Sample run of playlist .py

summary
In this project, we developed a program that analyzes iTunes playlists and, 
in the process, learned some useful Python constructs. In upcoming projects, 
you’ll build on some of the basics covered here to explore a wide range of 
interesting topics and delve deeper into Python.

experiments!
Here are a few ways you could build on this program:

1. When finding duplicate tracks, you considered track duration as an 
additional criterion to determine whether two tracks were identical. 
But when finding common tracks, you used only track names to make 
comparisons. Incorporate track duration as an additional check in 
findCommonTracks().

2. In the plotStats() method, you used the matplotlib hist() method 
to compute and display the histogram. Write code to compute the 
histogram manually and display it without using the hist() method. 
To display a plot as a bar chart, read up on bar charts in the matplotlib 
documentation.

3. Several mathe matical formulas exist for calculating a correlation 
 coefficient, which measures the strength of a relationship between 
two variables. Read up on correlation and calculate a correlation value 
for a rating/duration scatter plot using your own music data. Consider 
other scatter plots you can make with data gleaned from your playlists.





2
s P i r o g r a P h s

You can use a Spirograph toy (shown in 
Figure 2-1) to draw mathematical curves. 

The toy consists of two different sized rings 
with plastic teeth, one large and one small. The 

small one has several holes. You put a pen or pencil 
through one of the holes and then rotate the smaller 
wheel inside the larger one (which has gears on its 
inside), keeping the pen in contact with the outer 
wheel, to draw an endless number of complex and 
wonderfully symmetric patterns. 

In this project, you’ll use Python to create an animation of Spirograph-
like drawing curves. Our spiro.py program will use Python and parametric 
equations to describe the motion of the program’s Spirograph’s rings and 
draw the curves (which I call spiros). You’ll save the completed drawings as 
PNG image files and use command line options to specify parameters or to 
generate random spiros. 

www.allitebooks.com
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Figure 2-1: A Spirograph toy

In this project, you’ll learn how to draw spiros on your computer. You’ll 
also learn how to do the following:

•	 Create graphics with the turtle module.

•	 Use parametric equations.

•	 Use mathematical equations to generate curves.

•	 Draw a curve using lines.

•	 Use a timer to animate graphics.

•	 Save graphics to image files.

A word of caution about this project: I’ve chosen to use the turtle mod-
ule for this project mainly for illustrative purposes and because it’s fun, but 
turtle is slow and not ideal for creating graphics when performance is criti-
cal. (What do you expect from turtles?) If you want to draw something fast, 
there are better ways to do so, and you’ll explore some of these options in 
upcoming projects.

Parametric equations
In this section, you will look at a simple example of using parametric equa-
tions to draw a circle. Parametric equations express the coordinates of the 
points of a curve as functions of a variable, called a parameter. They make it 
easy to draw curves because you can just plug parameters into equations to 
produce a curve.

n o t e  If you’d rather not get into this math right now, you can skip ahead to the next sec-
tion, which talks about the equations specific to the Spirograph project. 
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Let’s begin by considering that the equation used to describe a circle 
with radius r, centered at the origin of a two-dimensional plane, is. A 
circle consists of all the points at the x- and y-coordinates that satisfy this 
equation. 

Now, consider the following equations:

x = r cos(q)  
y = r sin(q)

These equations are a parametric representation of a circle, where the 
angle q is the parameter. Any value of (x, y) in these equations will satisfy 
the equation for a circle described earlier, x2 + y2 = r2. If you vary q from 
0 to 2p, you can use these equations to compute a corresponding x-and-y 
coordinate along the circle. Figure 2-2 shows this scheme.

(x, y)

Y

X

θ

0

x = r cos(θ)
y = r sin(θ)

Figure 2-2: Describing a circle with a parametric equation

Remember, these two equations apply to a circle centered at the origin 
of the coordinate system. You can put a circle at any point in the xy plane by 
translating the center of the circle to the point (a, b). So the more general 
parametric equations then become x = a + r cos(q) and y = b + r cos(q). Now 
let’s look at the equations that describe your spiros.

Spirograph Equations
Figure 2-3 shows a mathematical model of Spirograph-like motion. The 
model has no gears because they’re used in the toy only to prevent slippage, 
and here you don’t have to worry about anything slipping.
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P = (x, y)

Y

X

θ

0

R P r

C

Figure 2-3: Spirograph mathematical model

In Figure 2-3, C is the center of the smaller circle, and P is the pen’s tip. 
The radius of the bigger circle is R, and that of the smaller circle is r. You 
express the ratio of the radii as follows:

k
r
R

=

You express the ratio of segment PC to the smaller circle’s radius r as 
the variable l (l = PC / r), which determines how far the pen tip is from the 
center of the small circle. You then combine these variables to represent the 
motion of P to produce these parametric equations:

x R k lk
k

k
= −( ) ( ) + −











1

1
cos cosθ θ

y R k lk
k

k
= −( ) ( ) + −











1

1
sin sinθ θ

n o t e  These curves are called hypotrochoids and epitrochoids. Although the equations may 
look a bit scary, the derivation is pretty straightforward. See the Wikipedia page if 
you’d like to explore the math.1

1. http://en.wikipedia.org/wiki/Spirograph/

http://en.wikipedia.org/wiki/Spirograph/
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Figure 2-4 shows how you use these equations to produce a curve that 
varies based on the parameters used. By varying the parameters R, r, and l, 
you can produce an endless variety of fascinating curves.

R = 220
r = 65
l = 0.8

Figure 2-4: A sample curve

You draw the curve as a series of lines between points. If the points are 
close enough, the drawing looks like a smooth curve. 

If you’ve played with a real Spirograph, you know that depending on 
the parameters used, Spirographs can require many revolutions to com-
plete. To determine when to stop drawing, you use the periodicity of the 
Spirograph (how long before the Spirograph starts repeating itself) by 
looking at the ratio of the radii of the inner and outer circles: 

r
R

You reduce this fraction by dividing the numerator and denominator 
by the greatest common divisor (GCD), and the numerator tells you how many 
periods the curve needs to complete itself. For example, in Figure 2-4, the 
GCD of (r, R) is 5. 

r
R
= 65

220

Here is the reduced form of this fraction:

65 5

220 5
13
44

/

/
( )
( )

=

This tells you that in 13 revolutions, the curve will start repeating itself. 
The number 44 tells you the number of times the smaller circle revolves 
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about its center, which gives you a hint to the shape of the curve. If you 
count them in Figure 2-4, you’ll see that the number of petals or lobes in 
the drawing is exactly 44! 

Once you express the radii ratio in the reduced form r/R, the range 
for the parameter q to draw the spiro is [0, 2pr]. This tells you when to stop 
drawing a particular spiro. Without know the ending range of the angle, 
you would be looping around, repeating the curve unnecessarily.

Turtle Graphics
You’ll use Python’s turtle module to create your drawings; it’s a simple draw-
ing program modeled after the idea of a turtle dragging its tail through the 
sand, creating patterns. The turtle module includes methods you can use 
to set the position and color of the pen (the turtle’s tail) and many other 
useful functions for drawing. As you will see, all you need is a handful of 
graphics functions to create cool-looking spiros.

For example, this program uses turtle to draw a circle. Enter the follow-
ing code, save it as drawcircle.py, and run it in Python:

import math
u import turtle

# draw the circle using turtle
def drawCircleTurtle(x, y, r):
    # move to the start of circle

v     turtle.up()
w     turtle.setpos(x + r, y)
x     turtle.down()

    # draw the circle
y     for i in range(0, 365, 5):
z         a = math.radians(i)
{         turtle.setpos(x + r*math.cos(a), y + r*math.sin(a))

| drawCircleTurtle(100, 100, 50)
} turtle.mainloop()

You start by importing the turtle module at u. Next, you define the 
drawCircleTurtle() method, which calls up() at v. This tells Python to move 
the pen up; in other words, take the pen off the virtual paper so that it 
won’t draw as you move the turtle. You want to position the turtle before 
you start drawing. 

At w, you set the turtle’s position to the first point on the horizontal 
axis: (x + r, y), where (x, y) is the center of the circle. Now you’re ready to 
draw, so you call down() at x. At y, you start a loop using range(0, 365, 5), 
which increments the variable i in steps of 5 from 0 to 360. The i variable 
is the angle parameter you’ll pass into the parametric circle equation, but 
first you convert it from degrees to radians at z. (Most computer programs 
require radians for angle-based calculations.) 
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At {, you compute the circle’s coordinates using the parametric equa-
tions discussed previously, and set the turtle position accordingly, which 
draws a line from the last turtle position to the newly calculated one. 
(Technically, you’re producing an N -sided polygon, but because you’re 
using small angles, N will be very large, and the polygon will look like a 
circle.)

At |, you call drawCircleTurtle() to draw the circle, and at }, you call 
mainloop(), which keeps the tkinter window open so that you can admire 
your circle. (tkinter is the default GUI library used by Python.)

Now you’re ready to draw some spiros!

requirements
You’ll use the following to create your spiros:

•	 The turtle module for drawing

•	 Pillow, a fork of the Python Imaging Library (PIL), to save the spiro images

the code
First, define a class Spiro to draw the curves. You’ll use this class to draw a 
single curve in one go (using the draw() method) and to animate a set of 
random spiros using a timer and the update() method. To draw and animate 
the Spiro objects, you’ll use a class called SpiroAnimator.

To see the full project code, skip ahead to “The Complete Code” on 
page 31. 

The Spiro Constructor
Here is the Spiro constructor:

# a class that draws a Spirograph
class Spiro:
    # constructor
    def __init__(self, xc, yc, col, R, r, l):

        # create the turtle object
u         self.t = turtle.Turtle()

        # set the cursor shape
v         self.t.shape('turtle')

        # set the step in degrees
w         self.step = 5

        # set the drawing complete flag
x         self.drawingComplete = False

        # set the parameters
y         self.setparams(xc, yc, col, R, r, l)

        # initialize the drawing
z         self.restart()
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The Spiro constructor creates a new turtle object at u, which will 
help you draw multiple spiros simultaneously. At v, you set the shape of 
the turtle cursor to a turtle. (You’ll find other choices in the turtle docu-
mentation at https://docs.python.org/3.3/library/turtle.html.) You set the angle 
increment for the parametric drawing to 5 degrees at w, and at x, you set a 
flag that you’ll use during the animation, which produces a bunch of spiros.

At y and z, you call setup functions, as discussed next.

The Setup Functions
Let’s now take a look at the setparams() method, which helps initialize a 
Spiro object, as shown here:

    # set the parameters
    def setparams(self, xc, yc, col, R, r, l):
        # the Spirograph parameters

u         self.xc = xc
        self.yc = yc

v         self.R = int(R)
        self.r = int(r)
        self.l = l
        self.col = col
        # reduce r/R to its smallest form by dividing with the GCD

w         gcdVal = gcd(self.r, self.R)
x         self.nRot = self.r//gcdVal

        # get ratio of radii
        self.k = r/float(R)
        # set the color
        self.t.color(*col)
        # store the current angle

y         self.a = 0 

At u, you store the coordinates of the center of the curve. Then you 
convert the radius of each circle (R and r) to an integer and store the 
 values at v. At w, you use the gcd() method from the built-in Python mod-
ule  fractions to compute the GCD of the radii. You’ll use this information 
to determine the periodicity of the curve, which you save as self.nRot at x. 
Finally, at y, you store the current angle, a, which you’ll use to create the 
animation.

The restart() Method
Next, the restart() method resets the drawing parameters for the Spiro 
object and gets it ready for a redraw:

    # restart the drawing
    def restart(self):
        # set the flag

u         self.drawingComplete = False
        # show the turtle

v         self.t.showturtle()

https://docs.python.org/3.3/library/turtle.html
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        # go to the first point
w         self.t.up()
x         R, k, l = self.R, self.k, self.l

        a = 0.0
y         x = R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))

        y = R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
z         self.t.setpos(self.xc + x, self.yc + y)
{         self.t.down()

Here you use a Boolean flag drawingComplete to determine whether the 
drawing has been completed, and you initialize the flag at u. This flag is 
useful while multiple Spiro objects are being drawn because it allows you 
to keep track of whether a particular spiro is complete. At v, you show 
the turtle cursor, in case it was hidden. You lift up the pen at w so you 
can move to the first position at z without drawing a line. At x, you’re 
just using some local variables to keep the code compact. Then, at y, you 
compute the x- and y-coordinates with the angle a set to 0 to get the curve’s 
starting point. Finally, at {, you’ve finished, and you set the pen down. The 
setpos() call will draw the actual line.

The draw() Method
The draw() method draws the curve in one continuous line.

    # draw the whole thing
    def draw(self):
        # draw the rest of the points
        R, k, l = self.R, self.k, self.l

u         for i in range(0, 360*self.nRot + 1, self.step):
            a = math.radians(i)

v             x = R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))
            y = R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
            self.t.setpos(self.xc + x, self.yc + y)
        # drawing is now done so hide the turtle cursor

w         self.t.hideturtle() 

At u, you iterate through the complete range of the parameter i, 
which is expressed in degrees as 360 times nRot. Compute the x- and 
y-coordinates for each value of the i parameter at v, and at w, hide the 
 cursor because you’ve finished drawing. 

Creating the Animation
The update() method shows the drawing method you use to draw the curve 
segment by segment to create an animation.

    # update by one step
    def update(self):
        # skip the rest of the steps if done

u         if self.drawingComplete:
            return
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        # increment the angle
v         self.a += self.step

        # draw a step
        R, k, l = self.R, self.k, self.l
        # set the angle

w         a = math.radians(self.a)
        x = self.R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))
        y = self.R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
        self.t.setpos(self.xc + x, self.yc + y)
        # if drawing is complete, set the flag

x         if self.a >= 360*self.nRot:
            self.drawingComplete = True
            # drawing is now done so hide the turtle cursor
            self.t.hideturtle()

At u, the update() method checks to see whether the drawingComplete flag 
is set; if not, it continues through the rest of the code. At v, update() incre-
ments the current angle. Beginning at w, it calculates the (x, y) position 
corresponding to the current angle and moves the turtle there, drawing the 
line segment in the process. 

When I discussed the Spirograph equations, I talked about the period-
icity of the curve. A Spirograph starts repeating itself after a certain angle. 
At x, you see whether the angle has reached the full range computed for 
this particular curve. If so, you set the drawingComplete flag because the draw-
ing is complete. Finally, you hide the turtle cursor so you can see your beau-
tiful creation.

The SpiroAnimator Class
The SpiroAnimator class will let you draw random spiros simultaneously. This 
class uses a timer to draw the curves one segment at a time; this technique 
updates the graphics periodically and lets the program process events 
such as button presses, mouse clicks, and so on. But this timer technique 
requires some restructuring in the drawing code.

# a class for animating Spirographs
class SpiroAnimator:
    # constructor
    def __init__(self, N):
        # set the timer value in milliseconds

u         self.deltaT = 10
        # get the window dimensions

v         self.width = turtle.window_width()
        self.height = turtle.window_height()
        # create the Spiro objects

w         self.spiros = []
        for i in range(N):
            # generate random parameters

x             rparams = self.genRandomParams()
            # set the spiro parameters

y             spiro = Spiro(*rparams)
            self.spiros.append(spiro)
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        # call timer
z         turtle.ontimer(self.update, self.deltaT)

At u, the SpiroAnimator constructor sets deltaT to 10, which is the time 
interval in milliseconds you’ll use for the timer. At v, you store the dimen-
sions of the turtle window. Then you create an empty array at w, which 
you’ll populate with Spiro objects. These encapsulate the Spirograph draw-
ing and then loop N times (N is passed into SpiroAnimator in the construc-
tor), create a new Spiro object at y, and add it to the list of Spiro objects. 
The rparams here is a tuple that you need to pass into the Spiro construc-
tor. However, the constructor expects a list of arguments, so you use the 
Python * operator to convert a tuple to a list of arguments. 

Finally, at z, you set the turtle.ontimer() method to call update() every 
deltaT milliseconds. 

Notice at x that you call a helper method called genRandomParams(). 
You’ll look at that next.

The genRandomParams() Method
You’ll use the genRandomParams() method to generate random parameters to 
send to each Spiro object as it’s created in order to create a wide variety of 
curves.

    # generate random parameters
    def genRandomParams(self):
        width, height = self.width, self.height

u         R = random.randint(50, min(width, height)//2)
v         r = random.randint(10, 9*R//10)
w         l = random.uniform(0.1, 0.9)
x         xc = random.randint(-width//2, width//2)
y         yc = random.randint(-height//2, height//2)
z         col = (random.random(),

               random.random(),
               random.random())

{         return (xc, yc, col, R, r, l) 

To generate random numbers, you use two methods from the random 
Python module: randint(), which returns random integers in the specified 
range, and uniform(), which does the same for floating-point numbers. At u, 
you set R to a random integer between 50 and the value of half the smallest 
dimension of your window, and at v, you set r to between 10 and 90 percent 
of R. 

Then at w, you set l to a random fraction between 0.1 and 0.9. At x 
and y, you select a random point on the screen to place the center of the 
spiro by selecting random x- and y-coordinates from within the screen 
boundaries. Assign a random color to the curve at z by setting random 
 values to the red, green, and blue color components. Finally, at {, all of 
your calculated parameters are returned as a tuple.

www.allitebooks.com
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Restarting the Program
We’ll use another restart() method to restart the program. 

# restart spiro drawing
    def restart(self):
        for spiro in self.spiros:
            # clear
            spiro.clear()
            # generate random parameters
            rparams = self.genRandomParams()
            # set the spiro parameters
            spiro.setparams(*rparams)
            # restart drawing
            spiro.restart()

This loops through all the Spiro objects, clears the previous drawing for 
each, assigns new spiro parameters, and then restarts the program.

The update() Method
The following code shows the update() method in SpiroAnimator, which is 
called by the timer to update all the Spiro objects used in the animation:

    def update(self):
        # update all spiros

u         nComplete = 0
        for spiro in self.spiros:
            # update

v             spiro.update()
            # count completed spiros

w             if spiro.drawingComplete:
                nComplete += 1
        # restart if all spiros are complete

x         if nComplete == len(self.spiros):
            self.restart()
        # call the timer

y         turtle.ontimer(self.update, self.deltaT)

The update() method uses a counter nComplete to track the number 
of Spiro objects being drawn. After you initialize at u, it loops through the 
list of Spiro objects, updates them at v, and increments the counter at w if a 
Spiro is completed. 

Outside the loop at x, you check the counter to determine whether all 
the objects have finished drawing. If so, you restart the animation with fresh 
spiros by calling the restart() method. At the end of a restart() at y, you call 
the timer method, which calls update() again after deltaT milliseconds. 
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Showing or Hiding the Cursor
Finally, you use the following method to toggle the turtle cursor on and off. 
This can be used to make the drawing go faster. 

    # toggle turtle cursor on and off
    def toggleTurtles(self):
        for spiro in self.spiros:
            if spiro.t.isvisible():
                spiro.t.hideturtle()
            else:
                spiro.t.showturtle()

Saving the Curves
Use the saveDrawing() method to save the drawings as PNG image files. 

# save drawings as PNG files
def saveDrawing():
    # hide the turtle cursor

u         turtle.hideturtle()
        # generate unique filenames

v         dateStr = (datetime.now()).strftime("%d%b%Y-%H%M%S")
        fileName = 'spiro-' + dateStr 
        print('saving drawing to %s.eps/png' % fileName)
        # get the tkinter canvas

w         canvas = turtle.getcanvas()
        # save the drawing as a postscipt image

x         canvas.postscript(file = fileName + '.eps')
        # use the Pillow module to convert the postscript image file to PNG

y         img = Image.open(fileName + '.eps')
z         img.save(fileName + '.png', 'png')

        # show the turtle cursor
{         turtle.showturtle()

At u, you hide the turtle cursor so that you won’t see it in the final 
drawing. Then, at v, you use datetime() to generate unique names for 
the image files by using the current time and date (in the day-month-year-
hour-minute-second format). You append this string to spiro- to generate the 
filename.

The turtle program uses user interface (UI) windows created by 
tkinter, and you use the canvas object of tkinter to save the window in the 
Embedded PostScript (EPS) file format at w and x. Because EPS is vector 
based, you can use it to print your images at high resolution, but PNG is 
more versatile, so you use Pillow to open the EPS file at y and save it as a 
PNG file at z. Finally, at {, you unhide the turtle cursor.
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Parsing Command Line Arguments and Initialization
Like in Chapter 1, you use argparse in the main() method to parse command 
line options sent to the program.

u     parser = argparse.ArgumentParser(description=descStr)

    # add expected arguments
v     parser.add_argument('--sparams', nargs=3, dest='sparams', required=False, 

                        help="The three arguments in sparams: R, r, l.")

    # parse args
w     args = parser.parse_args() 

At u, you create the argument parser object, and at v, you add the 
--sparams optional argument to the parser. You make the call that does the 
actual parsing at w.

Next, the code sets up some turtle parameters.

    # set the width of the drawing window to 80 percent of the screen width
u     turtle.setup(width=0.8)

    # set the cursor shape to turtle
v     turtle.shape('turtle')

    # set the title to Spirographs!
w     turtle.title("Spirographs!")

    # add the key handler to save our drawings
x     turtle.onkey(saveDrawing, "s")

    # start listening 
y     turtle.listen()

    # hide the main turtle cursor
z     turtle.hideturtle() 

At u, you use setup() to set the width of the drawing window to 80 per-
cent of the screen width. (You could also give setup() specific height and 
origin parameters.) You set the cursor shape to turtle at v, and you set 
the title of the program window to Spirographs! at w. At x, you use onkey() 
with saveDrawing to save the drawing when you press S. Then, at y, you call 
 listen() to make the window listen for user events. Finally, at z, you hide 
the turtle cursor.

Once the command line arguments are parsed, the rest of the code 
proceeds as follows:

    # check for any arguments sent to --sparams and draw the Spirograph
u     if args.sparams:
v         params = [float(x) for x in args.sparams]

        # draw the Spirograph with the given parameters
        col = (0.0, 0.0, 0.0)

w         spiro = Spiro(0, 0, col, *params)
x         spiro.draw()
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    else:
        # create the animator object

y         spiroAnim = SpiroAnimator(4)
        # add a key handler to toggle the turtle cursor

z         turtle.onkey(spiroAnim.toggleTurtles, "t")
        # add a key handler to restart the animation

{         turtle.onkey(spiroAnim.restart, "space")

    # start the turtle main loop
|     turtle.mainloop() 

At u, you first check whether any arguments were given to --sparams; if 
so, you extract them from the string and use a list comprehension to convert 
them into floats at v. (A list comprehension is a Python construct that lets 
you create a list in a compact and powerful way. For example, a = [2*x for x 
in range(1, 5)] creates a list of the first four even numbers.) 

At w, you use any extracted parameters to construct the Spiro object 
(with the help of the Python * operator, which converts the list into argu-
ments). Then, at x, you call draw(), which draws the spiro. 

Now, if no arguments were specified on the command line, you enter 
random mode. At y, you create a SpiroAnimator object, passing it the argu-
ment 4, which tells it to create four drawings. At z, use onkey to capture 
any presses of the T key so that you can use it to toggle the turtle cursors 
(toggleTurtles), and at {, handle presses of the spacebar (space) so that 
you can use it to restart the animation at any point. Finally, at |, you call 
 mainloop() to tell the tkinter window to stay open, listening for events.

the complete code
Here is the complete Spirograph program. You can also download the code 
for this project from https://github.com/electronut/pp/blob/master/spirograph/
spiro.py.

import sys, random, argparse
import numpy as np
import math
import turtle
import random
from PIL import Image
from datetime import datetime    
from fractions import gcd

# a class that draws a Spirograph
class Spiro:
    # constructor
    def __init__(self, xc, yc, col, R, r, l):

        # create the turtle object
        self.t = turtle.Turtle()
        # set the cursor shape
        self.t.shape('turtle')

https://github.com/electronut/pp/blob/master/spirograph/spiro.py
https://github.com/electronut/pp/blob/master/spirograph/spiro.py
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        # set the step in degrees
        self.step = 5
        # set the drawing complete flag
        self.drawingComplete = False

        # set the parameters
        self.setparams(xc, yc, col, R, r, l)

        # initialize the drawing
        self.restart()

    # set the parameters
    def setparams(self, xc, yc, col, R, r, l):
        # the Spirograph parameters
        self.xc = xc
        self.yc = yc
        self.R = int(R)
        self.r = int(r)
        self.l = l
        self.col = col
        # reduce r/R to its smallest form by dividing with the GCD
        gcdVal = gcd(self.r, self.R)
        self.nRot = self.r//gcdVal
        # get ratio of radii
        self.k = r/float(R)
        # set the color
        self.t.color(*col)
        # store the current angle
        self.a = 0

    # restart the drawing
    def restart(self):
        # set the flag
        self.drawingComplete = False
        # show the turtle
        self.t.showturtle()
        # go to the first point
        self.t.up()
        R, k, l = self.R, self.k, self.l
        a = 0.0
        x = R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))
        y = R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
        self.t.setpos(self.xc + x, self.yc + y)
        self.t.down()

    # draw the whole thing
    def draw(self):
        # draw the rest of the points
        R, k, l = self.R, self.k, self.l
        for i in range(0, 360*self.nRot + 1, self.step):
            a = math.radians(i)
            x = R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))
            y = R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
            self.t.setpos(self.xc + x, self.yc + y)
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        # drawing is now done so hide the turtle cursor
        self.t.hideturtle()
    
    # update by one step
    def update(self):
        # skip the rest of the steps if done
        if self.drawingComplete:
            return
        # increment the angle
        self.a += self.step
        # draw a step
        R, k, l = self.R, self.k, self.l
        # set the angle
        a = math.radians(self.a)
        x = self.R*((1-k)*math.cos(a) + l*k*math.cos((1-k)*a/k))
        y = self.R*((1-k)*math.sin(a) - l*k*math.sin((1-k)*a/k))
        self.t.setpos(self.xc + x, self.yc + y)
        # if drawing is complete, set the flag
        if self.a >= 360*self.nRot:
            self.drawingComplete = True
            # drawing is now done so hide the turtle cursor
            self.t.hideturtle()

    # clear everything
    def clear(self):
        self.t.clear()

# a class for animating Spirographs
class SpiroAnimator:
    # constructor
    def __init__(self, N):
        # set the timer value in milliseconds
        self.deltaT = 10
        # get the window dimensions
        self.width = turtle.window_width()
        self.height = turtle.window_height()
        # create the Spiro objects
        self.spiros = []
        for i in range(N):
            # generate random parameters
            rparams = self.genRandomParams()
            # set the spiro parameters
            spiro = Spiro(*rparams)
            self.spiros.append(spiro)
        # call timer
        turtle.ontimer(self.update, self.deltaT)
    
    # restart spiro drawing
    def restart(self):
        for spiro in self.spiros:
            # clear
            spiro.clear()
            # generate random parameters
            rparams = self.genRandomParams()
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            # set the spiro parameters
            spiro.setparams(*rparams)
            # restart drawing
            spiro.restart()

    # generate random parameters
    def genRandomParams(self):
        width, height = self.width, self.height
        R = random.randint(50, min(width, height)//2)
        r = random.randint(10, 9*R//10)
        l = random.uniform(0.1, 0.9)
        xc = random.randint(-width//2, width//2)
        yc = random.randint(-height//2, height//2)
        col = (random.random(),
               random.random(),
               random.random())
        return (xc, yc, col, R, r, l)

    def update(self):
        # update all spiros
        nComplete = 0
        for spiro in self.spiros:
            # update
            spiro.update()
            # count completed spiros
            if spiro.drawingComplete:
                nComplete += 1
        # restart if all spiros are complete
        if nComplete == len(self.spiros):
            self.restart()
        # call the timer
        turtle.ontimer(self.update, self.deltaT)

    # toggle turtle cursor on and off
    def toggleTurtles(self):
        for spiro in self.spiros:
            if spiro.t.isvisible():
                spiro.t.hideturtle()
            else:
                spiro.t.showturtle()
            
# save drawings as PNG files
def saveDrawing():
    # hide the turtle cursor
    turtle.hideturtle()
    # generate unique filenames
    dateStr = (datetime.now()).strftime("%d%b%Y-%H%M%S")
    fileName = 'spiro-' + dateStr 
    print('saving drawing to %s.eps/png' % fileName)
    # get the tkinter canvas
    canvas = turtle.getcanvas()
    # save the drawing as a postscipt image
    canvas.postscript(file = fileName + '.eps')
    # use the Pillow module to convert the poscript image file to PNG
    img = Image.open(fileName + '.eps')
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    img.save(fileName + '.png', 'png')
    # show the turtle cursor
    turtle.showturtle()

# main() function
def main():
    # use sys.argv if needed
    print('generating spirograph...')
    # create parser
    descStr = """This program draws Spirographs using the Turtle module. 
    When run with no arguments, this program draws random Spirographs.
    
    Terminology:

    R: radius of outer circle
    r: radius of inner circle
    l: ratio of hole distance to r
    """
    parser = argparse.ArgumentParser(description=descStr)
  
    # add expected arguments
    parser.add_argument('--sparams', nargs=3, dest='sparams', required=False, 
                        help="The three arguments in sparams: R, r, l.")

    # parse args
    args = parser.parse_args()

    # set the width of the drawing window to 80 percent of the screen width
    turtle.setup(width=0.8)

    # set the cursor shape to turtle
    turtle.shape('turtle')

    # set the title to Spirographs!
    turtle.title("Spirographs!")
    # add the key handler to save our drawings
    turtle.onkey(saveDrawing, "s")
    # start listening 
    turtle.listen()

    # hide the main turtle cursor
    turtle.hideturtle()

    # check for any arguments sent to --sparams and draw the Spirograph
    if args.sparams:
        params = [float(x) for x in args.sparams]
        # draw the Spirograph with the given parameters
        col = (0.0, 0.0, 0.0)
        spiro = Spiro(0, 0, col, *params)
        spiro.draw()
    else:
        # create the animator object
        spiroAnim = SpiroAnimator(4)
        # add a key handler to toggle the turtle cursor
        turtle.onkey(spiroAnim.toggleTurtles, "t")
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        # add a key handler to restart the animation
        turtle.onkey(spiroAnim.restart, "space")

    # start the turtle main loop
    turtle.mainloop()

# call main
if __name__ == '__main__':
    main()

running the spirograph animation
Now it’s time to run your program. 

$ python spiro.py

By default, the spiro.py program draws random spiros, as shown in 
Figure 2-5. Pressing S saves the drawing.

Figure 2-5: A sample run of spiro .py
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Now run the program again, this time passing in parameters on the 
command line to draw a particular spiro. 

$ python spiro.py --sparams 300 100 0.9

Figure 2-6 shows the output. As you can see, this code draws a single 
spiro with the parameters specified by the user, in contrast to Figure 2-5, 
which displays an animation of several random spiros.

Figure 2-6: A sample run of spiro .py  
with specific parameters

summary
In this project, you learned how to create Spirograph-like curves. You also 
learned how to adjust the input parameters to generate a variety of differ-
ent curves and to animate them on screen. I hope you enjoy creating these 
 spiros. (You’ll find a surprise in Chapter 13, where you’ll learn how to 
 project spiros onto a wall!)

experiments!
Here are some ways to experiment further with spiros.

1. Now that you know how to draw circles, write a program to draw ran-
dom spirals. Find the equation for a logarithmic spiral in parametric form 
and then use it to draw the spirals.

2. You might have noticed that the turtle cursor is always oriented to the 
right as the curves are drawn, but that’s not how turtles move! Orient 
the turtle so that, as the curve is being drawn, it faces in the direction 
of drawing. (Hint: calculate the direction vector between successive 
points for every step and reorient the turtle using the turtle.setheading() 
method.)

www.allitebooks.com

http://www.allitebooks.org
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3. Try drawing a Koch snowflake, a fractal curve constructed using recur-
sion (a function that calls itself), with the turtle. You can structure your 
recursive function call like this:

# recursive Koch snowflake
def kochSF(x1, y1, x2, y2, t):
    # compute intermediate points p2, p3
    if segment_length > 10:
        # recursively generate child segments
        # flake #1
        kochSF(x1, y1, p1[0], p1[1], t)
        # flake #2
        kochSF(p1[0], p1[1], p2[0], p2[1], t)
        # flake #3
        kochSF(p2[0], p2[1], p3[0], p3[1], t)
        # flake #4
        kochSF(p3[0], p3[1], x2, y2, t)
    else:
        # draw
        # ...

If you get really stuck, you can find my solution at http://electronut 
.in/koch-snowflake-and-the-thue-morse-sequence/.

http://electronut.in/koch-snowflake-and-the-thue-morse-sequence/
http://electronut.in/koch-snowflake-and-the-thue-morse-sequence/
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s i m u l a t i n g  l i f e

“First, let’s assume the cow is a sphere . . .” 
—Anonymous physics joke
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C o n w a y ’ s  g a m e  o f  l i f e

You can use a computer to study a system 
by creating a mathematical model for that 

system, writing a program to represent the 
model, and then letting the model evolve over 

time. There are many kinds of computer simulations, 
but I’ll focus on a famous one called Conway’s Game 
of Life, the work of the British mathematician John Conway. The Game of 
Life is an example of a cellular automaton, a collection of colored cells on a 
grid that evolve through a number of time steps according to a set of rules 
defining the states of  neighboring cells.

In this project, you’ll create an N×N grid of cells and simulate the evo-
lution of the system over time by applying the rules of Conway’s Game of 
Life. You’ll display the state of the game at each time step and provide ways 
to save the output to a file. You’ll set the initial condition of the system to 
either a random distribution or a predesigned pattern.
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This simulation consists of the following components:

•	 A property defined in one- or two-dimensional space

•	 A mathematical rule to change this property for each step in the 
simulation

•	 A way to display or capture the state of the system as it evolves

The cells in Conway’s Game of Life can be either ON or OFF. The game 
starts with an initial condition, in which each cell is assigned one state and 
mathematical rules determine how its state will change over time. The 
amazing thing about Conway’s Game of Life is that with just four  simple 
rules the system evolves to produce patterns that behave in incredibly 
complex ways, almost as if they were alive. Patterns include “gliders” that 
slide across the grid, “blinkers” that flash on and off, and even replicating 
patterns.

Of course, the philosophical implications of this game are also signifi-
cant, because they suggest that complex structures can evolve from simple 
rules without following any sort of preset pattern.

Here are some of the main concepts covered in this project:

•	 Using matplotlib imshow to represent a 2D grid of data

•	 Using matplotlib for animation

•	 Using the numpy array 

•	 Using the % operator for boundary conditions

•	 Setting up a random distribution of values

how It works
Because the Game of Life is built on a grid of nine squares, every cell has 
eight neighboring cells, as shown in Figure 3-1. A given cell (i, j) in the 
simulation is accessed on a grid [i][j], where i and j are the row and col-
umn indices, respectively. The value of a given cell at a given instant of time 
depends on the state of its neighbors at the previous time step.

Conway’s Game of Life has four rules.

1. If a cell is ON and has fewer than two neighbors that are ON, it 
turns OFF.

2. If a cell is ON and has either two or three neighbors that are ON, 
it remains ON.

3. If a cell is ON and has more than three neighbors that are ON, it 
turns OFF.

4. If a cell is OFF and has exactly three neighbors that are ON, it 
turns ON.
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These rules are meant to 
mirror some basic ways that a 
group of organisms might fare 
over time: underpopulation 
and overpopulation kill cells 
by turning a cell OFF when it 
has fewer than two neighbors 
or more than three, and cells 
stay ON and reproduce by turn-
ing another cell from OFF to 
ON when the population is 
balanced. But what about cells 
at the edge of the grid? Which 
cells are their neighbors? To 
answer this question, you need 
to think about boundary condi-
tions, the rules that govern what 
happens to cells at the edges 
or boundaries of the grid. I’ll 
address this question by using toroidal boundary conditions, meaning that 
the square grid wraps around so that its shape is a torus. As shown in 
Figure 3-2, the grid is first warped so that its horizontal edges (A and B) 
join to form a cylinder, and then the cylinder’s vertical edges (C and D) 
are joined to form a torus. Once the torus has been formed, all cells have 
neighbors because the whole space has no edge. 

A
B

A

BC

D

C

D

A

B

C

D

Figure 3-2: Conceptual visualization of toroidal boundary conditions

(i-1, j-1) (i-1, j) (i-1, j+1)

(i, j-1) (i, j) (i, j+1)

(i+1, j-1) (i+1, j) (i+1, j+1)

Figure 3-1: Eight neighboring cells
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n o t e  This is similar to how boundaries work in Pac-Man. If you go off the top of the 
screen, you appear on the bottom. If you go off the left side of the screen, you appear 
on the right side. This kind of boundary condition is common in 2D simulations. 

Here’s a description of the algorithm you’ll use to apply the four rules 
and run the simulation:

1. Initialize the cells in the grid.

2. At each time step in the simulation, for each cell (i, j) in the grid, do 
the following:

a. Update the value of cell (i, j) based on its neighbors, taking into 
account the boundary conditions.

b. Update the display of grid values.

requirements
You’ll use numpy arrays and the matplotlib library to display the simulation 
output, and you’ll use the matplotlib animation module to update the simula-
tion. (See Chapter 1 for a review of matplotlib.)

the code
You’ll develop the code for the simulation bit by bit inside the Python inter-
preter by examining the pieces needed for different parts. To see the full 
project code, skip ahead to “The Complete Code” on page 49.

First, import the modules you’ll be using for this project:

>>> import numpy as np
>>> import matplotlib.pyplot as plt 
>>> import matplotlib.animation as animation

Now let’s create the grid.

Representing the Grid
To represent whether a cell is alive (ON) or dead (OFF) on the grid, you’ll 
use the values 255 and 0 for ON and OFF, respectively. You’ll display the cur-
rent state of the grid using the imshow() method in matplotlib, which repre-
sents a matrix of numbers as an image. Enter the following:

u >>> x = np.array([[0, 0, 255], [255, 255, 0], [0, 255, 0]])
v >>> plt.imshow(x, interpolation='nearest')

plt.show()

At u, you define a 2D numpy array of shape (3, 3), where each element 
of the array is an integer value. You then use the plt.show() method to dis-
play this matrix of values as an image, and you pass in the interpolation 
option as 'nearest' at v to get sharp edges for the cells (or they’d be fuzzy). 
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Figure 3-3 shows the output of this code. 

Figure 3-3: Displaying a grid of values

Notice that the value of 0 (OFF) is shown in dark gray and 255 (ON) is 
shown in light gray, which is the default colormap used in imshow(). 

Initial Conditions
To begin the simulation, set an initial state for each cell in the 2D grid. 
You can use a random distribution of ON and OFF cells and see what kind 
of patterns emerge, or you can add some specific patterns and see how they 
evolve. You’ll look at both approaches.

To use a random initial state, use the choice() method from the random 
module in numpy. Enter the following:

np.random.choice([0, 255], 4*4, p=[0.1, 0.9]).reshape(4, 4)

Here is the output:

array([[255, 255, 255, 255],
       [255, 255, 255, 255],
       [255, 255, 255, 255],
       [255, 255, 255, 0]])

np.random.choice chooses a value from the given list [0, 255], with the 
probability of the appearance of each value given in the parameter p=[0.1, 
0.9]. Here, you ask for 0 to appear with a probability of 0.1 (or 10 percent) 
and for 255 to appear with a probability of 90 percent. (The two values in p 
must add up to 1.) Because this choice() method creates a one-dimensional 
array of 16 values, you use .reshape to make it a two-dimensional array.
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To set up the initial condition to match a particular pattern instead 
of just filling in a random set of values, initialize the two- dimensional grid 
to zeros and then use a method to add a pattern at a particular row and col-
umn in the grid, as shown here:

def addGlider(i, j, grid):
    """adds a glider with top left cell at (i, j)"""

u     glider = np.array([[0, 0, 255], 
                       [255, 0, 255], 
                       [0, 255, 255]])

v     grid[i:i+3, j:j+3] = glider 
w grid = np.zeros(N*N).reshape(N, N)
x addGlider(1, 1, grid)

At u, you define the glider pattern (an observed pattern that moves 
steadily across the grid) using a numpy array of shape (3, 3). At v, you can 
see how you use the numpy slice operation to copy this pattern array into the 
simulation’s two-dimensional grid, with its top-left corner placed at the 
coordinates you specify as i and j. You create an N×N array of zeros at w, 
and at x, you call the addGlider() method to initialize the grid with the 
glider pattern.

Boundary Conditions
Now we can think about how to implement the toroidal boundary condi-
tions. First, let’s see what happens at the right edge of a grid of size N×N. 
The cell at the end of row i is accessed as grid[i][N-1]. Its neighbor to the 
right is grid[i][N], but according to the toroidal boundary conditions, the 
value accessed as grid[i][N] should be replaced by grid[i][0]. Here’s one 
way to do that:

if j == N-1:
    right = grid[i][0]
else:
    right = grid[i][j+1]

Of course, you’d need to apply similar boundary conditions to the 
left, top, and bottom sides of the grid, but doing so would require adding 
a lot more code because each of the four edges of the grid would need to 
be tested. A much more compact way to accomplish this is with Python’s 
modulus (%) operator, as shown here: 

>>> N = 16
>>> i1 = 14
>>> i2 = 15
>>> (i1+1)%N
15
>>> (i2+1)%N
0



Conway’s Game of Life   47

As you can see, the % operator gives the remainder for the integer divi-
sion by N. You can use this operator to make the values wrap around at the 
edge by rewriting the grid access code like this:

right = grid[i][(j+1)%N]

Now when a cell is on the edge of the grid (in other words, when j = N-1), 
asking for the cell to the right with this method will give you (j+1)%N, which 
sets j back to 0, making the right side of the grid wrap to the left side. When 
you do the same for the bottom of the grid, it wraps around to the top.

Implementing the Rules
The rules of the Game of Life are based on the number of neighboring cells 
that are ON or OFF. To simplify the application of these rules, you can cal-
culate the total number of neighboring cells in the ON state. Because the 
ON states have a value of 255, you can just sum the values of all the neighbors 
and divide by 255 to get the number of ON cells. Here is the relevant code:

            # apply Conway's rules
            if grid[i, j] == ON:

u                 if (total < 2) or (total > 3):
                    newGrid[i, j] = OFF
            else:
                if total == 3:

v                     newGrid[i, j] = ON

At u, any cell that is ON is turned OFF if it has fewer than two neigh-
bors that are ON or if it has more than three neighbors that are ON. The 
code at v applies only to OFF cells: a cell is turned ON if exactly three 
neighbors are ON. 

Now it’s time to write the complete code for the simulation. 

Sending Command Line Arguments to the Program
The following code sends command line arguments to your program:

# main() function
def main():
    # command line argumentss are in sys.argv[1], sys.argv[2], ...
    # sys.argv[0] is the script name and can be ignored
    # parse arguments

u     parser = argparse.ArgumentParser(description="Runs Conway's Game of Life 
        simulation.")
    # add arguments

v     parser.add_argument('--grid-size', dest='N', required=False)
w     parser.add_argument('--mov-file', dest='movfile', required=False)
x     parser.add_argument('--interval', dest='interval', required=False)
y     parser.add_argument('--glider', action='store_true', required=False)

    args = parser.parse_args()

www.allitebooks.com
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The main() function begins by defining command line parameters for 
the program. You use the argparse class at u to add command line options 
to the code, and then you add various options to it in the following lines. 
At v, you specify the simulation grid size N, and at w, you specify the file-
name for the saved .mov file. At x, you set the animation update interval in 
milliseconds, and at y, you start the simulation with a glider pattern.

Initializing the Simulation
Continuing through the code, you come to the following section, which ini-
tializes the simulation:

    # set grid size
    N = 100
    if args.N and int(args.N) > 8:
        N = int(args.N)

    # set animation update interval
    updateInterval = 50
    if args.interval:
        updateInterval = int(args.interval)

    # declare grid
u     grid = np.array([])

    # check if "glider" demo flag is specified
    if args.glider:
        grid = np.zeros(N*N).reshape(N, N)
        addGlider(1, 1, grid)
    else:
        # populate grid with random on/off - more off than on
        grid = randomGrid(N)

Still within the main() function, this portion of the code applies any 
parameters called at the command line, once the command line options 
have been parsed. For example, the lines that follow u set up the initial 
conditions, either a random pattern by default or a glider pattern. 

Finally, you set up the animation.

    # set up the animation
u     fig, ax = plt.subplots()

    img = ax.imshow(grid, interpolation='nearest')
v     ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N, ),

                                  frames=10,
                                  interval=updateInterval,
                                  save_count=50)

    # number of frames? 
    # set the output file
    if args.movfile:
        ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264'])

    plt.show()
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At u, you configure the matplotlib plot and animation parameters. 
At v, animation.FuncAnimation() calls the function update(), defined earlier 
in the program, which updates the grid according to the rules of Conway’s 
Game of Life using toroidal boundary conditions. 

the complete code
Here is the complete program for your Game of Life simulation. You can 
also download the code for this project from https://github.com/electronut/pp/
blob/master/conway/conway.py.

import sys, argparse
import numpy as np
import matplotlib.pyplot as plt 
import matplotlib.animation as animation

ON = 255
OFF = 0
vals = [ON, OFF]

def randomGrid(N):
    """returns a grid of NxN random values"""
    return np.random.choice(vals, N*N, p=[0.2, 0.8]).reshape(N, N)

def addGlider(i, j, grid):
    """adds a glider with top-left cell at (i, j)"""
    glider = np.array([[0,    0, 255], 
                       [255,  0, 255], 
                       [0,  255, 255]])
    grid[i:i+3, j:j+3] = glider

def update(frameNum, img, grid, N):
    # copy grid since we require 8 neighbors for calculation
    # and we go line by line 
    newGrid = grid.copy()
    for i in range(N):
        for j in range(N):
            # compute 8-neghbor sum using toroidal boundary conditions
            # x and y wrap around so that the simulation
            # takes place on a toroidal surface
            total = int((grid[i, (j-1)%N] + grid[i, (j+1)%N] + 
                         grid[(i-1)%N, j] + grid[(i+1)%N, j] + 
                         grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] + 
                         grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])/255)
            # apply Conway's rules
            if grid[i, j] == ON:
                if (total < 2) or (total > 3):
                    newGrid[i, j] = OFF
            else:
                if total == 3:
                    newGrid[i, j] = ON

https://github.com/electronut/pp/blob/master/conway/conway.py
https://github.com/electronut/pp/blob/master/conway/conway.py
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    # update data
    img.set_data(newGrid)
    grid[:] = newGrid[:]
    return img,

# main() function
def main():
    # command line arguments are in sys.argv[1], sys.argv[2], ...
    # sys.argv[0] is the script name and can be ignored
    # parse arguments
    parser = argparse.ArgumentParser(description="Runs Conway's Game of Life  
        simulation.")
  # add arguments
    parser.add_argument('--grid-size', dest='N', required=False)
    parser.add_argument('--mov-file', dest='movfile', required=False)
    parser.add_argument('--interval', dest='interval', required=False)
    parser.add_argument('--glider', action='store_true', required=False)
    parser.add_argument('--gosper', action='store_true', required=False)
    args = parser.parse_args()
    
    # set grid size
    N = 100
    if args.N and int(args.N) > 8:
        N = int(args.N)
        
    # set animation update interval
    updateInterval = 50
    if args.interval:
        updateInterval = int(args.interval)

    # declare grid
    grid = np.array([])
    # check if "glider" demo flag is specified
    if args.glider:
        grid = np.zeros(N*N).reshape(N, N)
        addGlider(1, 1, grid)
    else:
        # populate grid with random on/off - more off than on
        grid = randomGrid(N)

    # set up the animation
    fig, ax = plt.subplots()
    img = ax.imshow(grid, interpolation='nearest')
    ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N, ),
                                  frames=10,
                                  interval=updateInterval,
                                  save_count=50)

    # number of frames? 
    # set the output file
    if args.movfile:
        ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264'])

    plt.show()
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# call main
if __name__ == '__main__':
    main()

running the game of life simulation
Now run the code:

$ python3 conway.py

This uses the default parameters for the simulation: a grid of 100×100 
cells and an update interval of 50 milliseconds. As you watch the simula-
tion, you’ll see how it progresses to create and sustain various patterns over 
time, as in Figure 3-4.

(a) (b)Figure 3-4: Game of Life in progress

Figure 3-5 shows some of the patterns to look for in the simulation. 
Besides the glider, look for a three-cell blinker and static patterns such as 
a block or loaf shape.

Now change things up a bit by running the simulation with these 
parameters:

$ python conway.py --grid-size 32 --interval 500 --glider

This creates a simulation grid of 32×32, updates the ani mation every 
500 milliseconds, and uses the initial glider pattern shown in the bottom 
right of Figure 3-5.
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Block Loaf

GliderBlinker (period 2)

Figure 3-5: Patterns in Game of Life

summary
In this project, you explored Conway’s Game of Life. You learned how to 
set up a basic computer simulation based on some rules and how to use 
 matplotlib to visualize the state of the system as it evolves. 

My implementation of Conway’s Game of Life emphasizes simplicity 
over performance. You can speed up the computations in Game of Life in 
many different ways, and a tremendous amount of research has been done 
on how to do this. You’ll find a lot of this research with a quick Internet 
search.

experiments!
Here are some ways to experiment further with Conway’s Game of Life.

1. Write an addGosperGun() method to add the pattern shown in Figure 3-6 
to the grid. This pattern is called the Gosper Glider Gun. Run the simula-
tion and observe what the gun does.

Figure 3-6: Gosper Glider Gun
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2. Write a readPattern() method that reads in an initial pattern from a text 
file and uses it to set the initial conditions for the simulation. Here is a 
suggested format for this file:

8
0 0 0 255 ...

The first line of the file defines N, and the rest of the file is just 
N×N integers (0 or 255) separated by whitespace. You can use Python 
methods such as open and file.read to do this. This exploration will help 
you study how any given pattern evolves with the rules of the Game of 
Life. Add a --pattern-file command line option to use this file while 
running the program.





4
g e n e r a t i n g  m u s i C a l 
o v e r t o n e s  w i t h  t h e  

k a r P l u s - s t r o n g  a l g o r i t h m

One of the main characteristics of any 
 musical sound is its pitch, or frequency. 

This is the number of vibrations per second 
in hertz (Hz). For example, the third string 

from the top of an acoustic guitar produces an D note 
with a frequency of 146.83 Hz. This is a sound you can 
approximate by creating a sine wave with a frequency 
of 146.83 Hz on a computer, as shown in Figure 4-1.

Unfortunately, if you play this sine wave on your computer, it won’t sound 
anything like a guitar or a piano. What makes a computer sound so differ-
ent from a musical instrument when playing the same note? 
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Figure 4-1: Sine wave at 146.83 Hz

When you pluck a string on the guitar, the instrument produces a 
mix of frequencies with varying intensity, as shown in the spectral plot in 
Figure 4-2. The sound is most intense when the note is first struck, and 
the intensity dies off over time. The dominant frequency you hear when 
you pluck the D string on the guitar, called the fundamental frequency, is 
146.83 Hz, but you also hear certain multiples of that frequency called over-
tones. The sound of any instrument is comprised of this fundamental fre-
quency and overtones, and it’s the combination of these that makes a guitar 
sound like a guitar. 

Figure 4-2: Spectral plot of note D4 played on guitar

As you can see, to simulate the sound of a plucked string instrument on 
the computer, you need to be able to generate both the fundamental fre-
quency and the overtones. The trick is to use the Karplus-Strong algorithm.

In this project, you’ll generate five guitar-like notes of a musical scale (a 
series of related notes) using the Karplus-Strong algorithm. You’ll visualize 
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the algorithm used to generate these notes and save the sounds as WAV 
files. You’ll also create a way to play them at random and learn how to do 
the following:

•	 Implement a ring buffer using the Python deque class.

•	 Use numpy arrays and ufuncs.

•	 Play WAV files using pygame.

•	 Plot a graph using matplotlib.

•	 Play the pentatonic musical scale.

In addition to implementing the Karplus-Strong algorithm in Python, 
you’ll also explore the WAV file format and see how to generate notes 
within a pentatonic musical scale.

how It works
The Karplus-Strong algorithm can simulate the sound of a plucked string 
by using a ring buffer of displacement values to simulate a string tied down at 
both ends, similar to a guitar string.

A ring buffer (also known as a circular buffer) is a fixed-length buffer 
( just an array of values) that wraps around itself. In other words, when you 
reach the end of the buffer, the next element you access will be the first 
element in the buffer. (See “Implementing the Ring Buffer with deque” on 
page 61 for more about ring buffers.)

The length (N) of the ring buffer is related to the fundamental fre-
quency of vibration according to the equation N = S/f, where S is the sam-
pling rate and f is the frequency. 

At the start of the simulation, the buffer is filled with random values in 
the range [−0.5, 0.5], which you might think of as representing the random 
displacement of a plucked string as it vibrates.

In addition to the ring buffer, you use a samples buffer to store the inten-
sity of the sound at any particular time. The length of this buffer and the 
sampling rate determine the length of the sound clip.

The Simulation
The simulation proceeds until the sample buffer is filled in a kind of feed-
back scheme, as shown in Figure 4-3. For each step of the simulation, you 
do the following:

1. Store the first value from the ring buffer in the samples buffer.

2. Calculate the average of the first two elements in the ring buffer.

3. Multiply this average value by an attenuation factor (in this case, 0.995).

4. Append this value to the end of the ring buffer.

5. Remove the first element of the ring buffer.
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t1 t2...
samples buffer

... ...

+

ring buffer
popleft()

average*0.995

Figure 4-3: Ring buffer and the Karplus-Strong algorithm

To simulate a plucked string, fill a ring buffer with numbers that repre-
sent the energy of the wave. The sample buffer, which represents the final 
sound data, is created by iterating through the values in the ring buffer. 
Use an averaging scheme (explained in a moment) to update values in the 
ring buffer.

This feedback scheme is designed to simulate the energy traveling 
through a vibrating string. According to physics, for a vibrating string, the 
fundamental frequency is inversely proportional to its length. Since we are 
interested in generating sounds of a certain frequency, we choose a ring 
buffer length that is inversely proportional to that frequency. The averag-
ing that happens in step 1 of the simulation acts as a low-pass filter that 
cuts off higher frequencies and allows lower frequencies through, thereby 
eliminating higher harmonics (that is, larger multiples of the fun damental 
frequency) because you’re mainly interested in the fundamental frequency. 
Finally, you use the attenuation factor to simulate the loss of energy as the 
wave travels back and forth along the string.

The samples buffer that you use in step 1 of the simulation represents 
the amplitude of the generated sound over time. To calculate the amplitude 
at any given time, you update the ring buffer by calculating the average of 
its first two elements and multiplying the result by an attenuation factor. 
This calculated value is then appended to the end of the ring buffer, and 
the first element is removed.

Now let’s look at a simple example of the algorithm in action. The fol-
lowing table represents a ring buffer at two consecutive time steps. Each 
value in the ring buffer represents the amplitude of the sound. The buffer 
has five elements, and they are initially filled with some numbers.

time step 1 0 .1 –0 .2 0 .3 0 .6 –0 .5

time step 2 –0 .2 0 .3 0 .6 –0 .5 –0 .199

As you go from time step 1 to step 2, apply the Karplus-Strong algo-
rithm as follows. The first value in the first row, 0.1, is removed, and all sub-
sequent values from time step 1 are added in the same order to the second 
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row, which represents time step 2. The last value in time step 2 is the attenu-
ated average of the first and last values of time step 1, which is calculated as 
0.995 × ((0.1 + –0.5) ÷ 2) = –0.199.

Creating WAV Files
The Waveform Audio File Format (WAV) is used to store audio data. This for-
mat is convenient for small audio projects because it is simple and doesn’t 
require you to deal with complicated compression techniques. 

In its simplest form, WAV files consist of a series of bits representing the 
amplitude of the recorded sound at a given point in time, called the resolu-
tion. You’ll use 16-bit resolution in this project. WAV files also have a set sam-
pling rate, which is the number of times the audio is sampled, or read, every 
second. In this project, you use a sampling rate of 44,100 Hz, the rate used 
in audio CDs. Let’s generate a five-second audio clip of a 220 Hz sine wave 
using Python. First, you represent a sine wave using this formula: 

A = sin(2pft) 

Here, A is the amplitude of the wave, f is the frequency, and t is the cur-
rent time index. Now you rewrite this equation as follows:

A = sin(2pfi/R)

In this equation, i is the index of the sample, and R is the sampling rate. 
Using these two equations, you can create a WAV file for a 200 Hz sine wave 
as follows:

import numpy as np
import wave, math

sRate = 44100
nSamples = sRate * 5

u x = np.arange(nSamples)/float(sRate)
v vals = np.sin(2.0*math.pi*220.0*x)
w data = np.array(vals*32767, 'int16').tostring()

file = wave.open('sine220.wav', 'wb')
x file.setparams((1, 2, sRate, nSamples, 'NONE', 'uncompressed'))

file.writeframes(data)
file.close()

At u and v, you create a numpy array (see Chapter 1) of amplitude  values, 
according to the second sine wave equation. The numpy array is a fast and 
convenient way to apply functions to arrays such as the sin() function. 

At w, the computed sine wave values in the range [–1, 1] are scaled to 
16-bit values and converted to a string so they can be written to a file. At x, 
you set the parameters for the WAV file; in this case, it’s a single-channel 
(mono), two-byte (16-bit), uncompressed format. Figure 4-4 shows the 
 generated sine220.wav file in Audacity, a free audio editor. As expected, 
you see a sine wave of frequency 220 Hz, and when you play the file, you 
hear a 220 Hz tone for five seconds. 
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Figure 4-4: A sine wave at 220 Hz

The Minor Pentatonic Scale
A musical scale is a series of notes in increasing or decreasing pitch or fre-
quency. A musical interval is the difference between two pitches. Usually, 
all notes in a piece of music are chosen from a particular scale. A semitone 
is a basic building block of a scale and is the smallest musical interval in 
Western music. A tone is twice the length of a semitone. The major scale, 
one of the most common musical scales, is defined by the interval pattern 
tone-tone-semitone-tone-tone-tone-semitone.

We will briefly go into the pentatonic scale here, since we want to gen-
erate musical notes in that scale. This section will tell you how we came up 
with the frequency numbers used by our program to generate these notes 
using the Karplus-Strong algorithm. The pentatonic scale is a five-note musi-
cal scale. For example, the famous American song “Oh! Susanna” is based 
on a pentatonic scale. A variant of this scale is the minor pentatonic scale. 

This scale is given by the note sequence (tone+semitone)-tone-tone-
(tone+semitone)-tone. Thus, the C minor pentatonic scale consists of the notes 
C, E-flat, F, G, and B-flat. Table 4-1 lists the frequencies of the five notes of 
a minor pentatonic scale that you will generate using the Karplus-Strong 
algorithm. (Here, C4 designates C in the fourth octave of a piano, or middle 
C, by convention.)

table 4-1: Notes in a Minor Pentatonic Scale

note frequency (hz)

C4 261 .6

E-flat 311 .1

F 349 .2

G 392 .0

B-flat 466 .2
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requirements
In this project, you’ll use the Python wave module to create audio files in 
WAV format. You’ll use numpy arrays for the Karplus-Strong algorithm and 
the deque class from Python collections to implement the ring buffer. You’ll 
also play back the WAV files with the pygame module. 

the code
Now let’s develop the various pieces of code required to implement the 
Karplus-Strong algorithm and then put them together for the complete 
program. To see the full project code, skip ahead to “The Complete Code” 
on page 65.

Implementing the Ring Buffer with deque
Recall from earlier that the Karplus-Strong algorithm uses a ring buf-
fer to generate a musical note. You’ll implement the ring buffer using 
Python’s deque container (pronounced “deck”)—part of Python’s collections 
 module—which provides specialized container data types in an array. You 
can insert and remove elements from the beginning (head) or end (tail) 
of a deque (see Figure 4-5). This insertion and removal process is a O(1), or 
a “constant time” operation, which means it takes the same amount of time 
regardless of how big the deque container gets. 

deque

popleft() append()
O(1) O(1)

head tail

Figure 4-5: Ring buffer using deque

The following code shows how you would use deque in Python:

>>> from collections import deque
u >>> d = deque(range(10))

>>> print(d)
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

v >>> d.append(-1)
>>> print(d)
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1])

w >>> d.popleft()
0
>>> print d
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, -1])

At u, you create the deque container by passing in a list created by the 
range() method. At v, you append an element to the end of the deque con-
tainer, and at w, you pop (remove) the first element from the head of the 
deque. Both these operations happen quickly.
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Implementing the Karplus-Strong Algorithm
You also use a deque container to implement the Karplus-Strong algorithm 
for the ring buffer, as shown here:

# generate note of given frequency
def generateNote(freq):
    nSamples = 44100
    sampleRate = 44100
    N = int(sampleRate/freq)
    # initialize ring buffer

u     buf = deque([random.random() - 0.5 for i in range(N)])
    # initialize samples buffer

v     samples = np.array([0]*nSamples, 'float32')
    for i in range(nSamples):

w         samples[i] = buf[0]
x         avg = 0.996*0.5*(buf[0] + buf[1])

        buf.append(avg)
        buf.popleft() 

    # convert samples to 16-bit values and then to a string
    # the maximum value is 32767 for 16-bit

y     samples = np.array(samples*32767, 'int16')
z     return samples.tostring()

At u, you initialize deque with random numbers in the range [–0.5, 0.5]. 
At v, you set up a float array to store the sound samples. The length of this 
array matches the sampling rate, which means the sound clip will be gener-
ated for one second. 

The first element in deque is copied to the samples buffer at w. At x, 
and in the lines that follow, you can see the low-pass filter and attenuation 
in action. At y, the samples array is converted into a 16-bit format by mul-
tiplying each value by 32,767 (a 16-bit signed integer can take only values 
from −32,768 to 32,767), and at z, it is converted to a string representation 
for the wave module, which you’ll use to save this data to a file.

Writing a WAV File
Once you have the audio data, you can write it to a WAV file using the 
Python wave module. 

def writeWAVE(fname, data):
    # open file 

u     file = wave.open(fname, 'wb')
    # WAV file parameters 
    nChannels = 1
    sampleWidth = 2
    frameRate = 44100
    nFrames = 44100
    # set parameters

v     file.setparams((nChannels, sampleWidth, frameRate, nFrames,
                    'NONE', 'noncompressed'))
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w     file.writeframes(data)
    file.close()

At u, you create a WAV file, and at v, you set its parameters using a 
single-channel, 16-bit, uncompressed format. Finally, at w, you write the 
data to the file. 

Playing WAV Files with pygame
Now you’ll use the Python pygame module to play the WAV files generated by 
the algorithm. pygame is a popular Python module used to write games. It’s 
built on top of the Simple DirectMedia Layer (SDL) library, a high-perfor-
mance, low-level library that gives you access to sound, graphics, and input 
devices on a computer.

For convenience, you encapsulate the code in a NotePlayer class, as 
shown here:

# play a WAV file
class NotePlayer:
    # constructor
    def __init__(self):

u         pygame.mixer.pre_init(44100, -16, 1, 2048)
        pygame.init()
        # dictionary of notes

v         self.notes = {}
    # add a note
    def add(self, fileName):

w         self.notes[fileName] = pygame.mixer.Sound(fileName)
    # play a note
    def play(self, fileName):
        try:

x             self.notes[fileName].play()
        except:
            print(fileName + ' not found!')
    def playRandom(self):
        """play a random note"""

y         index = random.randint(0, len(self.notes)-1)
z         note = list(self.notes.values())[index]

        note.play()

At u , you preinitialize the pygame mixer class with a sampling rate of 
44,100, 16-bit signed values, a single channel, and a buffer size of 2,048. At 
v, you create a dictionary of notes, which stores the pygame sound objects 
against the filenames. Next, in NotePlayer’s add() method w, you create the 
sound object and store it in the notes dictionary. 

Notice in play() how the dictionary is used at x to select and play the 
sound object associated with a filename. The playRandom() method picks a 
random note from the five notes you’ve generated and plays it. Finally, at y, 
randint() selects a random integer from the range [0, 4] and at z picks a 
note to play from the dictionary.
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The main() Method
Now let’s look at the main() method, which creates the notes and handles 
various command line options to play the notes.

    parser = argparse.ArgumentParser(description="Generating sounds with 
        Karplus String Algorithm")
    # add arguments

u     parser.add_argument('--display', action='store_true', required=False)
    parser.add_argument('--play', action='store_true', required=False)
    parser.add_argument('--piano', action='store_true', required=False)
    args = parser.parse_args()

    # show plot if flag set
    if args.display:
        gShowPlot = True
        plt.ion()

    # create note player
    nplayer = NotePlayer()

    print('creating notes...')
    for name, freq in list(pmNotes.items()):
        fileName = name + '.wav' 

v         if not os.path.exists(fileName) or args.display:
            data = generateNote(freq) 
            print('creating ' + fileName + '...')
            writeWAVE(fileName, data) 
        else:
            print('fileName already created. skipping...')
        
        # add note to player

w         nplayer.add(name + '.wav')
        
        # play note if display flag set
        if args.display:

x             nplayer.play(name + '.wav')
            time.sleep(0.5)
    
    # play a random tune
    if args.play:
        while True:
            try: 

y                 nplayer.playRandom()
                # rest - 1 to 8 beats

z                 rest = np.random.choice([1, 2, 4, 8], 1, 
                                        p=[0.15, 0.7, 0.1, 0.05])
                time.sleep(0.25*rest[0])
            except KeyboardInterrupt:
                exit()

First, you set up some command line options for the program using 
argparse, as discussed in earlier projects. At u, if the --display command 
line option was used, you set up a matplotlib plot to show how the waveform 
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evolves during the Karplus-Strong algorithm. The ion() call enables inter-
active mode for matplotlib. You then create an instance of the NotePlayer 
class, generating the notes in a pentatonic scale using the generateNote() 
method. The frequencies for the five notes are defined in the global dic-
tionary pmNotes. 

At v, you use the os.path.exists() method to see whether the WAV file 
has been created. If so, you skip the computation. (This is a handy optimi-
zation if you’re running this program several times.) 

Once the note is computed and the WAV file created, you add the note 
to the NotePlayer dictionary at w and then play it at x if the display com-
mand line option is used. 

At y, if the –play option is used, the playRandom() method in NotePlayer 
plays a note at random from the five notes. For a note sequence to sound 
even remotely musical, you need to add rests between the notes played, so 
you use the random.choice() method from numpy at z to choose a random rest 
interval. This method also lets you choose the probability of the rest inter-
val, which you set so that a two-beat rest is the most probable and an eight-
beat rest the least probable. Try changing these values to create your own 
style of random music!

the complete code
Now let’s put the program together. The complete code is shown here and 
can also be downloaded from https://github.com/electronut/pp/blob/master/
karplus/ks.py.

import sys, os
import time, random 
import wave, argparse, pygame 
import numpy as np
from collections import deque
from matplotlib import pyplot as plt

# show plot of algorithm in action?
gShowPlot = False

# notes of a Pentatonic Minor scale
# piano C4-E(b)-F-G-B(b)-C5
pmNotes = {'C4': 262, 'Eb': 311, 'F': 349, 'G':391, 'Bb':466}

# write out WAV file
def writeWAVE(fname, data):
    # open file 
    file = wave.open(fname, 'wb')
    # WAV file parameters 
    nChannels = 1
    sampleWidth = 2
    frameRate = 44100
    nFrames = 44100

https://github.com/electronut/pp/blob/master/karplus/ks.py
https://github.com/electronut/pp/blob/master/karplus/ks.py
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    # set parameters
    file.setparams((nChannels, sampleWidth, frameRate, nFrames,
                    'NONE', 'noncompressed'))
    file.writeframes(data)
    file.close()

# generate note of given frequency
def generateNote(freq):
    nSamples = 44100
    sampleRate = 44100
    N = int(sampleRate/freq)
    # initialize ring buffer
    buf = deque([random.random() - 0.5 for i in range(N)])
    # plot of flag set 
    if gShowPlot:
        axline, = plt.plot(buf)
    # initialize samples buffer
    samples = np.array([0]*nSamples, 'float32')
    for i in range(nSamples):
        samples[i] = buf[0]
        avg = 0.995*0.5*(buf[0] + buf[1])
        buf.append(avg)
        buf.popleft()  
        # plot of flag set 
        if gShowPlot:
            if i % 1000 == 0:
                axline.set_ydata(buf)
                plt.draw()
      
    # convert samples to 16-bit values and then to a string
    # the maximum value is 32767 for 16-bit
    samples = np.array(samples*32767, 'int16')
    return samples.tostring()

# play a WAV file
class NotePlayer:
    # constructor
    def __init__(self):
        pygame.mixer.pre_init(44100, -16, 1, 2048)
        pygame.init()
        # dictionary of notes
        self.notes = {}
    # add a note
    def add(self, fileName):
        self.notes[fileName] = pygame.mixer.Sound(fileName)
    # play a note
    def play(self, fileName):
        try:
            self.notes[fileName].play()
        except:
            print(fileName + ' not found!')
    def playRandom(self):
        """play a random note"""
        index = random.randint(0, len(self.notes)-1)
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        note = list(self.notes.values())[index]
        note.play()

# main() function
def main():
    # declare global var
    global gShowPlot

    parser = argparse.ArgumentParser(description="Generating sounds with 
        Karplus String Algorithm")
    # add arguments
    parser.add_argument('--display', action='store_true', required=False)
    parser.add_argument('--play', action='store_true', required=False)
    parser.add_argument('--piano', action='store_true', required=False)
    args = parser.parse_args()

    # show plot if flag set
    if args.display:
        gShowPlot = True
        plt.ion()

    # create note player
    nplayer = NotePlayer()

    print('creating notes...')
    for name, freq in list(pmNotes.items()):
        fileName = name + '.wav' 
        if not os.path.exists(fileName) or args.display:
            data = generateNote(freq) 
            print('creating ' + fileName + '...')
            writeWAVE(fileName, data) 
        else:
            print('fileName already created. skipping...')
        
        # add note to player
        nplayer.add(name + '.wav')
        
        # play note if display flag set
        if args.display:
            nplayer.play(name + '.wav')
            time.sleep(0.5)
    
    # play a random tune
    if args.play:
        while True:
            try: 
                nplayer.playRandom()
                # rest - 1 to 8 beats
                rest = np.random.choice([1, 2, 4, 8], 1, 
                                        p=[0.15, 0.7, 0.1, 0.05])
                time.sleep(0.25*rest[0])
            except KeyboardInterrupt:
                exit()
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    # random piano mode
    if args.piano:
        while True:
            for event in pygame.event.get():
                if (event.type == pygame.KEYUP):
                    print("key pressed")
                    nplayer.playRandom()
                    time.sleep(0.5)
  
# call main
if __name__ == '__main__':
    main()

running the Plucked string simulation
To run the code for this project, enter this in a command shell:

$ python3 ks.py –display

As you can see in Figure 4-6, the  matplotlib plot shows how the Karplus-
Strong algorithm converts the initial random displacements to create waves 
of the desired frequency. 

Figure 4-6: Sample run of Karplus-Strong algorithm
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Now try playing a random note using this program.

$ python ks.py –play

This should play a random note sequence using the generated WAV 
files of the pentatonic musical scale.

summary
In this project, you used the Karplus-Strong algorithm to simulate the 
sound of plucked strings and played notes from generated WAV files. 

experiments!
Here are some ideas for experiments:

1. Use the techniques you learned in this chapter to create a method that 
replicates the sound of two strings of different frequencies vibrating 
together. Remember, the Karplus-Strong algorithm produces sound 
amplitudes that can be added together (before scaling to 16-bit values 
for WAV file creation). Now add a time delay between the first and sec-
ond string plucks. 

2. Write a method to read music from a text file and generate musical 
notes. Then play the music using these notes. You can use a format 
where the note names are followed by integer rest time intervals, like 
this: C4 1 F4 2 G4 1 . . . .

3. Add a --piano command line option to the project. When the project 
is run with this option, the user should be able to press the A, S, D, 
F, and G keys on a keyboard to play the five musical notes. (Hint: use 
 pygame.event.get and pygame.event.type.)





5
B o i d s :  s i m u l a t i n g  a  f l o C k

Look closely at a flock of birds or a school 
of fish, and you’ll notice that although the 

groups are composed of individual creatures, 
the group as a whole seems to have a life of its 

own. The birds in a flock align with each other as 
they move and flow over and around obstacles. They 
break formation when disturbed or startled but then 
regroup, as if controlled by some larger force. 

In 1986, Craig Reynolds created a realistic-looking simulation of the 
flocking behavior of birds called the Boids model. One remarkable thing 
about the Boids model (named after the stereotypical New Yorker’s pronun-
ciation of the word birds) is that only three simple rules govern the inter-
action between individuals in the flock, yet the model produces behavior 
similar to that of a real flock. The Boids model is widely studied and has 
even been used to animate computer-generated swarms like the marching 
penguins in the movie Batman Returns (1992). 
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In this project, you’ll use Reynolds’s three rules to create a Boids simu-
lation of the flocking behavior of N birds and plot their positions and direc-
tions of movement over time. You’ll also provide a method to add a bird to 
the flock as well as a scatter effect that you can use to study the effect of a 
local disturbance on the flock. Boids is called an N-body simulation because 
it models a dynamic system of N particles that exert forces on each other.

how It works
The three core rules of the Boids simulation are as follows:

Separation Keep a minimum distance between the boids.

Alignment Point each boid in the average direction of movement of 
its local flockmates.

Cohesion Move each boid toward the center of mass of its local 
flockmates.

Boids simulations can add other rules, too, such as ones to avoid 
 obstacles or scatter the flock when it’s disturbed, as you’ll learn in the fol-
lowing sections. This version of Boids implements these core rules for every 
step in the simulation:

•	 For all boids in the flock, do the following:

•	 Apply the three core rules.

•	 Apply any additional rules.

•	 Apply all boundary conditions.

•	 Update the positions and velocities of the boids.

•	 Plot the new positions and velocities.

As you will see, these simple rules create a flock with evolving, complex 
behavior.

requirements
These are the Python tools you’ll be using in this simulation:

•	 numpy arrays to store the positions and velocities of the boids

•	 The matplotlib library to animate the boids

•	 argparse to process command line options

•	 The scipy.spatial.distance module, which has some really neat methods 
for calculating distances between points

n o t e  I chose to use matplotlib for boids as a matter of simplicity and convenience. To draw 
a huge number of boids as fast as possible, you might use something like the OpenGL 
library. You’ll explore graphics in more detail in Part 3 of this book.
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the code
First, you’ll compute the position and velocities of the boids. Next, you’ll 
set up the boundary conditions for the simulation, look at how the boids 
are drawn, and implement the Boids simulation rules discussed earlier. 
Finally, you’ll add some interesting events to the simulation by adding boids 
and scattering the flock. To see the full project code, skip ahead to “The 
Complete Code” on page 82.

Computing the Position and Velocities of the Boids
The Boids simulation needs to compute the position and velocities of the 
boids at each step by pulling information from numpy arrays. At the begin-
ning of the simulation, you place all boids in approximately the center of 
the screen, with their velocities set in random directions.

u import math
v import numpy as np

w width, height = 640, 480

x pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)
y angles = 2*math.pi*np.random.rand(N)
z vel = np.array(list(zip(np.sin(angles), np.cos(angles))))

You begin by importing the math module used in the calculations 
that follow at u. At v, you import the numpy library as np (to save some typ-
ing). Then you set the width and height of the simulation window on the 
screen w. At x, you create a numpy array pos by adding a random displace-
ment of 10 units to the center of the window. The code np.random.rand(2*N) 
creates a one-dimensional array of 2N random numbers in the range [0, 1]. 
The reshape() call then converts this into a two-dimensional array of shape 
(N, 2), which you’ll use to store the boids’ positions. Notice, too, the numpy 
broadcasting rules in action here: the 1×2 array is added to each element in 
the N×2 array. 

Next, you create an array of 
random unit velocity vectors (these 
are vectors of magnitude 1.0, point-
ing in random directions) using the 
following method: given an angle t, 
the pair of numbers (cos(t), sin(t)) 
lie on a circle of radius 1.0, centered 
at the origin (0, 0). If you draw a 
line from the origin to a point on 
this circle, it becomes a unit vector 
that depends on the angle A. So if 
you choose A at random, you end 
up with a random velocity vector. 
Figure 5-1 illustrates this scheme.

y

x0
t1

t2

(cos(t1), sin(t1))
(cos(t2), sin(t2))

Figure 5-1: Generating random unit velocity 
vectors
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At y, you generate an array of N random angles in the range [0, 2pi], 
and at z, you create an array using the random vector method discussed 
earlier and group the coordinates using the built-in zip() method. Here is  
a simple example of zip(). This joins two lists into a list of tuples.

>>> zip([0, 1, 2], [3, 4, 5])
[(0, 3), (1, 4), (2, 5)]

Here you’ve generated two arrays, one with random positions clustered 
within a 10-pixel radius around the center of the screen and the other with 
unit velocities pointing in random directions. This means that at the start 
of the simulation, the boids will all hover around the center of the screen, 
pointed in random directions.

Setting Boundary Conditions
Birds fly in the boundless sky, but the boids must play in limited space. 
To create that space, you’ll create boundary conditions as you did with the 
toroidal boundary condition in the Conway simulation in Chapter 3. In this 
case, you’ll apply a tiled boundary condition (actually the continuous space 
version of the boundary condition you used in Chapter 3). 

Think of the Boids simulation as taking place in a tiled space: when a 
boid moves out of a tile, it moves in from the opposite direction to an iden-
tical tile. The main difference between the toroidal and tiled boundary 
conditions is that this Boids simulation won’t take place on a discrete grid; 
instead, the birds move over a continuous region. Figure 5-2 shows what 
those tiled boundary conditions look like. Look at the tile in the middle. 
The birds flying out to the right are entering the tile on the right, but the 
boundary conditions ensure that they actually come right back into the 
 center tile through the tile at the left. You can see the same thing happen-
ing at the top and bottom tiles.

Here is how you implement the tiled boundary conditions for the Boids 
simulation:

    def applyBC(self):
        """apply boundary conditions"""
        deltaR = 2.0
        for coord in self.pos:

u             if coord[0] > width + deltaR:
                coord[0] = - deltaR
            if coord[0] < - deltaR:
                coord[0] = width + deltaR 
            if coord[1] > height + deltaR:
                coord[1] = - deltaR
            if coord[1] < - deltaR:
                coord[1] = height + deltaR
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Figure 5-2: Tiled boundary conditions

At u, if the x-coordinate is greater than the width of the tile, you set it 
back to the left edge of the tile. The deltaR in this line provides a slight buf-
fer, which allows the boid to move slightly outside the tile before it starts 
coming back in from the opposite direction, thus producing a better visual 
effect. You perform a similar check at the left, top, and bottom edges of 
the tile. 

Drawing a Boid
To build the animation, you need to know the boid’s position and velocity, 
and have a way to indicate both position and direction of motion at each 
time step. 

Plotting the Boid’s Body and Head

To animate the boids, you use matplotlib and a little trick to plot both posi-
tion and velocity. Draw each boid as two circles, as shown in Figure 5-3. The 
larger circle represents the body, and the smaller one represents the head. 
Point P marks the center of the body, and H is the center of the head. You 
calculate the position of H according to the formula H = P + k × V, where V 
is the velocity of the boid and k is a constant. At any given time, the boid’s 
head is aligned in the direction of motion. This tells the boid’s direction of 
movement, which is better than just drawing the body alone.
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P

H

Figure 5-3: Representing a boid

In the following snippet, you draw the boid’s body and head as circular 
markers using matplotlib. 

    fig = plt.figure()
    ax = plt.axes(xlim=(0, width), ylim=(0, height))

u     pts, = ax.plot([], [], markersize=10, c='k', marker='o', ls='None')
v     beak, = ax.plot([], [], markersize=4, c='r', marker='o', ls='None')
w     anim = animation.FuncAnimation(fig, tick, fargs=(pts, beak, boids), 

                                   interval=50)

You set the size and shape of the markers for the boid’s body (pts) and 
head (beak) at u and v, respectively. You also add mouse button events to 
the animation window at w. Now that you know how to draw the body and 
beak, let’s see how to update their positions.

Updating the Boid’s Position

Once the ani mation starts, you need to update both the boid’s position and 
the location of the head, which tells you the direction in which the boid is 
moving. You do so with this code:

u vec = self.pos + 10*self.vel/self.maxVel
v beak.set_data(vec.reshape(2*self.N)[::2], vec.reshape(2*self.N)[1::2]) 

At u, you calculate the position of the head by applying a displace-
ment of 10 units in the direction of the velocity (vel). This displacement 
determines the distance between the beak and the body. At v, you update 
(reshape) the matplotlib axis (set_data) with the new values of the head posi-
tion. The [::2] picks out the even-numbered elements (x-axis values) from 
the velocity list, and the [1::2] picks out the odd-numbered elements (y-axis 
values).
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Applying the Rules of the Boids
Now you’ll implement the three rules of boids in Python. Let’s do this the 
“numpy way,” avoiding loops and using highly optimized numpy methods. 

import numpy as np
from scipy.spatial.distance import squareform, pdist, cdist

    def test2(pos, radius):
        # get distance matrix

u         distMatrix = squareform(pdist(pos))
        # apply threshold

v         D = distMatrix < radius
        # compute velocity

w         vel = pos*D.sum(axis=1).reshape(N, 1) - D.dot(pos)
        return vel

You use the squareform() and pdist() methods at u (defined in the scipy 
library) to calculate the pairwise distances between an array of points. 
(You do this by picking any two points from the array and computing the 
distance and then doing that for all such possible pairs.) For example, in 
this code, you have three points, which means three possible pairs of points:

>>> import numpy as np
>>> from scipy.spatial.distance import squareform, pdist
>>> x = np.array([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]])
>>> squareform(pdist(x))
array([[ 0. , 1.41421356, 2.82842712],
[ 1.41421356, 0. , 1.41421356],
[ 2.82842712, 1.41421356, 0. ]])

The squareform() method gives you a 3×3 matrix, where an entry Mij gives 
the distance between points Pi and Pj. Next, at v, you filter this matrix based 
on distance. Using the same three-point example, you have the following:

>>> squareform(pdist(x)) < 1.4
array([[ True, False, False],
[False, True, False],
[False, False, True]], dtype=bool) 

The < comparison sets the matrix entry for all distance pairs with a dis-
tance less than the given threshold, in this case, 1.4. This compact method 
of expressing what you want is closer to how you actually think about it. 

The method at w is a bit more complicated. The D.sum() method sums 
the True values in the matrix in a column-wise fashion. The reshape is 
required because the result of the sum is a one-dimensional array of N 
 values (shape (N, )), and you want it to be of shape (N, 1) so it’s compatible 
for multiplication with the position array. D.dot() is just the dot product 
(multiplication) of the matrix and the position vector.
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test2 is much smaller than test1, but its real advantage is speed. Let’s 
use the Python timeit module to compare the performance of the previous 
two approaches. The following code, written inside the Python interpreter, 
assumes you have the code for the functions test1 and test2 typed in a file 
named test.py in the same directory:

>>> from timeit import timeit
>>> timeit('test1(pos, 100)', 'from test import test1, N, pos, width, height', 
number=100)
7.880876064300537
>>> timeit('test2(pos, 100)', 'from test import test2, N, pos, width, height', 
number=100)
0.036969900131225586

On my computer, the numpy code without loops runs about 200 times 
faster than the code that uses explicit loops! But why? Aren’t they both 
doing more or less the same thing? 

The reason is that as an interpreted language, Python is inherently 
slower than compiled languages like C. The numpy library brings the con-
venience of Python and performance nearly equal to that of C by providing 
highly optimized methods that operate on arrays of data. (You’ll find that 
numpy works best when you reorganize your algorithm as steps that operate 
on entire arrays at once, without looping through individual elements to 
perform computations.)

Here is the method that applies the three rules for boids using the numpy 
techniques discussed earlier:

    def applyRules(self):
        # apply rule #1: Separation
        D = distMatrix < 25.0

u         vel = self.pos*D.sum(axis=1).reshape(self.N, 1) - D.dot(self.pos)
v         self.limit(vel, self.maxRuleVel)

        # distance threshold for alignment (different from separation)
        D = distMatrix < 50.0

        # apply rule #2: Alignment
w         vel2 = D.dot(self.vel)

        self.limit(vel2, self.maxRuleVel)
        vel += vel2;

        # apply rule #3: Cohesion
x         vel3 = D.dot(self.pos) - self.pos

        self.limit(vel3, self.maxRuleVel)
        vel += vel3

        return vel
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When you apply the separation rule at u, each boid is “pushed away” 
from neighboring boids within a certain distance, as discussed at the begin-
ning of this section. At v, the calculated velocity is clamped or restricted to 
a certain maximum value. (Without this check, the values would increase 
with each time step, and the simulation would go haywire.)

When you apply the alignment rule at w, the velocities of all neigh-
boring boids within a radius of 50 units are added up and restricted to a 
maximum. This is done so that the computed final velocity doesn’t increase 
indefinitely. As a result, any given boid is influenced by and aligns itself 
with the average velocity of the boids within the specified radius. (The use 
of the compact numpy syntax for doing this computation makes things simple 
and fast.)

Finally, when you apply the cohesion rule at x, you add a velocity vector 
for each boid that points to the centroid or geometric center of the neighbor-
ing boids within a certain radius. You use the Boolean distance matrix and 
numpy methods to arrive at a compact syntax.

Adding a Boid
The core rules in the Boids simulation will cause the boids to exhibit flock-
ing behavior. But let’s make things more interesting by adding a boid to the 
flock in the  middle of a simulation to see how it behaves. 

The following code creates a mouse event that will allow you to add 
a boid by clicking the left mouse button. A boid will appear at the cursor 
location with a random velocity assigned to it. 

    # add a "button press" event handler
u     cid = fig.canvas.mpl_connect('button_press_event', buttonPress) 

At u, you use the mpl_connect() method to add a button press event 
to the matplotlib canvas. The buttonPress() method will be called every time 
the mouse button is pressed in the simulation window. 

Now, to handle the mouse event and actually create your boid, add 
this code:

    def buttonPress(self, event):
    """event handler for matplotlib button presses"""
    # left-click to add a boid

u     if event.button is 1:
v         self.pos = np.concatenate((self.pos, 

                                   np.array([[event.xdata, event.ydata]])),
                                   axis=0)
        # generate a random velocity

w         angles = 2*math.pi*np.random.rand(1)
        v = np.array(list(zip(np.sin(angles), np.cos(angles))))
        self.vel = np.concatenate((self.vel, v), axis=0)
        self.N += 1 
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At u, you ensure that the mouse event is a left-click. At v, you append 
the mouse location given by (event.xdata, event.ydata) to your boid’s posi-
tion array. At w, and the lines that follow, you add a random velocity vector 
to the boid’s velocity array and increment the count of boids by 1.

Scattering the Boids
The three simulation rules keep the boids in a flock as they move around. 
But what happens when the flock is disturbed? To simulate this situation, 
you can introduce a “scatter” effect: when you right-click in the user inter-
face (UI) window, the flock will scatter. You can think of this as how the 
flock might respond to the sudden appearance of a predator or a loud noise 
that spooks the birds. Here’s one way to implement this, as a continuation 
of the buttonPress() method:

        # right-click to scatter boids
u         elif event.button is 3:

            # add scattering velocity 
v             self.vel += 0.1*(self.pos - np.array([[event.xdata, event.ydata]])) 

At u, you check whether the mouse button press is a right-click event. 
At v, you change the velocity for every boid by adding a component in the 
direction opposite the point where the disturbance arose (that is, where the 
mouse was clicked). Initially, the boids will fly away from that point, but as 
you will see, the three rules prevail, and the boids will coalesce again as a 
flock.

Command Line Arguments
Here’s how command line arguments are handled for the boids program:

u     parser = argparse.ArgumentParser(description="Implementing Craig 
                                     Reynolds's Boids...")
    # add arguments
    parser.add_argument('--num-boids', dest='N', required=False)
    args = parser.parse_args()

    # set the initial number of boids
    N = 100
    if args.N:
        N = int(args.N)

    # create boids
    boids = Boids(N)

The main() method starts by setting up a command line option at u, 
using the familiar argparse module.
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The Boids Class
Next, let’s look at the Boids class, which represents the simulation.

class Boids:
    """class that represents Boids simulation"""
    def __init__(self, N):
        """initialize the Boid simulation"""
        # initial position and velocities

u         self.pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)
        # normalized random velocities
        angles = 2*math.pi*np.random.rand(N)
        self.vel = np.array(list(zip(np.sin(angles), np.cos(angles))))
        self.N = N
        # minimum distance of approach
        self.minDist = 25.0
        # maximum magnitude of velocities calculated by "rules"
        self.maxRuleVel = 0.03
        # maximum magnitude of the final velocity
        self.maxVel = 2.0 

The Boids class handles the initialization, updates the animation, and 
applies the rules. The position and velocity arrays are initialized at u and 
in the lines that follow. 

boids.tick() is called at each time step to update the animation, as 
shown here:

def tick(frameNum, pts, beak, boids):
    #print frameNum
    """update function for animation"""
    boids.tick(frameNum, pts, beak)
    return pts, beak

You also need a way to limit the value of some vectors. Otherwise, the 
velocities will keep increasing indefinitely with every time step, and the 
simulation will come apart.

    def limitVec(self, vec, maxVal):
        """limit the magnitude of the 2D vector"""
        mag = norm(vec)
        if mag > maxVal:
            vec[0], vec[1] = vec[0]*maxVal/mag, vec[1]*maxVal/mag

u     def limit(self, X, maxVal):
        """limit the magnitude of 2D vectors in array X to maxValue"""
        for vec in X:
            self.limitVec(vec, maxVal)

You define a limit() method at u that clamps the values in an array to a 
value calculated by the simulation rules. 
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the complete code
Here is the complete program for your Boids simulation. You can also 
download the code for this project from https://github.com/electronut/pp/ 
blob/master/boids/boids.py.

import sys, argparse
import math
import numpy as np
import matplotlib.pyplot as plt 
import matplotlib.animation as animation
from scipy.spatial.distance import squareform, pdist, cdist
from numpy.linalg import norm

width, height = 640, 480

class Boids:
    """class that represents Boids simulation"""
    def __init__(self, N):
        """initialize the Boid simulation"""
        # initial position and velocities
        self.pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)
        # normalized random velocities
        angles = 2*math.pi*np.random.rand(N)
        self.vel = np.array(list(zip(np.sin(angles), np.cos(angles))))
        self.N = N
        # minimum distance of approach
        self.minDist = 25.0
        # maximum magnitude of velocities calculated by "rules"
        self.maxRuleVel = 0.03
        # maximum maginitude of the final velocity
        self.maxVel = 2.0

    def tick(self, frameNum, pts, beak):
        """Update the simulation by one time step."""
        # get pairwise distances
        self.distMatrix = squareform(pdist(self.pos))
        # apply rules:
        self.vel += self.applyRules()
        self.limit(self.vel, self.maxVel)
        self.pos += self.vel
        self.applyBC()
        # update data
        pts.set_data(self.pos.reshape(2*self.N)[::2], 
                     self.pos.reshape(2*self.N)[1::2])
        vec = self.pos + 10*self.vel/self.maxVel
        beak.set_data(vec.reshape(2*self.N)[::2], 
                      vec.reshape(2*self.N)[1::2])

    def limitVec(self, vec, maxVal):
        """limit the magnitide of the 2D vector"""
        mag = norm(vec)

https://github.com/electronut/pp/blob/master/boids/boids.py
https://github.com/electronut/pp/blob/master/boids/boids.py
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        if mag > maxVal:
            vec[0], vec[1] = vec[0]*maxVal/mag, vec[1]*maxVal/mag
    
    def limit(self, X, maxVal):
        """limit the magnitide of 2D vectors in array X to maxValue"""
        for vec in X:
            self.limitVec(vec, maxVal)
            
    def applyBC(self):
        """apply boundary conditions"""
        deltaR = 2.0
        for coord in self.pos:
            if coord[0] > width + deltaR:
                coord[0] = - deltaR
            if coord[0] < - deltaR:
                coord[0] = width + deltaR    
            if coord[1] > height + deltaR:
                coord[1] = - deltaR
            if coord[1] < - deltaR:
                coord[1] = height + deltaR
    
    def applyRules(self):
        # apply rule #1: Separation
        D = self.distMatrix < 25.0
        vel = self.pos*D.sum(axis=1).reshape(self.N, 1) - D.dot(self.pos)
        self.limit(vel, self.maxRuleVel)

        # distance threshold for alignment (different from separation)
        D = self.distMatrix < 50.0

        # apply rule #2: Alignment
        vel2 = D.dot(self.vel)
        self.limit(vel2, self.maxRuleVel)
        vel += vel2;

        # apply rule #3: Cohesion
        vel3 = D.dot(self.pos) - self.pos
        self.limit(vel3, self.maxRuleVel)
        vel += vel3

        return vel

    def buttonPress(self, event):
        """event handler for matplotlib button presses"""
        # left-click to add a boid
        if event.button is 1:
            self.pos = np.concatenate((self.pos, 
                                       np.array([[event.xdata, event.ydata]])), 
                                       axis=0)
            # generate a random velocity
            angles = 2*math.pi*np.random.rand(1)
            v = np.array(list(zip(np.sin(angles), np.cos(angles))))
            self.vel = np.concatenate((self.vel, v), axis=0)
            self.N += 1 
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        # right-click to scatter boids
        elif event.button is 3:
            # add scattering velocity 
            self.vel += 0.1*(self.pos - np.array([[event.xdata, event.ydata]]))
        
def tick(frameNum, pts, beak, boids):
    #print frameNum
    """update function for animation"""
    boids.tick(frameNum, pts, beak)
    return pts, beak

# main() function
def main():
    # use sys.argv if needed
    print('starting boids...')

    parser = argparse.ArgumentParser(description="Implementing Craig 
                                     Reynold's Boids...")
    # add arguments
    parser.add_argument('--num-boids', dest='N', required=False)
    args = parser.parse_args()

    # set the initial number of boids
    N = 100
    if args.N:
        N = int(args.N)

    # create boids
    boids = Boids(N)

    # set up plot
    fig = plt.figure()
    ax = plt.axes(xlim=(0, width), ylim=(0, height))

    pts, = ax.plot([], [], markersize=10, c='k', marker='o', ls='None')
    beak, = ax.plot([], [], markersize=4, c='r', marker='o', ls='None')
    anim = animation.FuncAnimation(fig, tick, fargs=(pts, beak, boids), 
                                   interval=50)

    # add a "button press" event handler
    cid = fig.canvas.mpl_connect('button_press_event', boids.buttonPress)

    plt.show()

# call main
if __name__ == '__main__':
    main()
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running the Boids simulation
Let’s see what happens when you run the simulation. Enter the following:

$ python3 boids.py 

The Boids simulation should start, and all boids should cluster around 
the center of the window. Let the simulation run for a while, and the boids 
should start to flock as they form a pattern similar to the one shown in 
Figure 5-4.

Figure 5-4: Sample run of boids

Click the simulation window. A new boid should appear at that location, 
and its velocity should change as it encounters the flock. Now right-click. 
The flock should scatter initially but then recoalesce. 

summary
In this project, you simulated the flocking of birds (or boids) using the 
three rules proposed by Craig Reynolds. You looked at how to use numpy 
arrays and how to use explicit loops and numpy methods on entire arrays to 
improve the speed of computations. You used the scipy.spatial module to 
perform fast and convenient distance calculations, and you implemented a 
matplotlib trick that uses two markers to represent both the position and the 
direction of points. Finally, you added UI interaction in the form of a but-
ton press to matplotlib plots.
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experiments!
Here are some ways you might further explore flocking behavior:

1. Implement obstacle avoidance for your flock of boids by writing a new 
method called avoidObstacle() and applying it right after you apply the 
three rules, as follows:

self.vel += self.applyRules()
self.vel += self.avoidObstacle()

The avoidObstacle() method should use a predefined tuple (x, y, R) to 
add a velocity component to a boid, pushing it away from the obstacle 
location (x, y), but only when the boid is within radius R of the obstacle. 
Think of this as the distance at which a boid sees the obstacle and steers 
away from it. You can specify the (x, y, R) tuple using a command line 
option. 

2. What happens when the boids fly though a strong gust of wind? 
Simulate this by adding a global velocity component to all the boids 
at random time steps in the simulation. The boids should temporarily 
be affected by the wind but return to the flock once the wind stops. 



Part III
f u n  w i t h  i m a g e s

“You can observe a lot by watching.” 
—Yogi Berra





6
a s C i i  a r t

In the 1990s, when email ruled and 
 graphics capabilities were limited, it 

was common to include a signature in 
your email that contained a graphic made of 

text, commonly called ASCII art. (ASCII is simply 
a character- encoding scheme.) Figure 6-1 shows a 
couple of examples. Although the Internet has made 
sharing images immeasurably easier, the humble text 
graphic isn’t quite dead yet.

ASCII art has its origins in typewriter art created in the late 1800s. In 
the 1960s, when computers had minimal graphics-processing hardware, 
ASCII was used to represent images. These days, ASCII art continues as a 
form of expression on the Internet, and you can find a variety of creative 
examples online. 
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Figure 6-1: Examples of ASCII art

In this project, you’ll use Python to create a program that generates 
ASCII art from graphical images. The program will let you specify the 
width of the output (the number of columns of text) and set a vertical 
scale factor. It also supports two mappings of grayscale values to ASCII 
characters: a sparse 10-level mapping and a more finely calibrated 70-level 
mapping.

To generate your ASCII art from an image, you’ll learn how to do the 
following:

•	 Convert images to grayscale using Pillow, a fork of the Python Imaging 
Library (PIL)

•	 Compute the average brightness of a grayscale image using numpy

•	 Use a string as a quick lookup table for grayscale values

how It works
This project takes advantage of the fact that from a distance, we perceive 
grayscale images as the average value of their brightness. For example, in 
Figure 6-2, you can see a grayscale image of a building and, next to it, an 
image filled with the average brightness value of the building image. If you 
look at the images from across the room, they will look similar.

The ASCII art is generated by splitting an image into tiles and replac-
ing the average RGB value of a tile with an ASCII character. From a dis-
tance, since our eyes have limited resolution, we sort of see the “average” 
values in ASCII art while losing the details that would otherwise make the 
art look less real. 
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Figure 6-2: Average value of a grayscale image

This program will take a given image and first convert it to 8-bit gray-
scale so that each pixel has a grayscale value in the range [0, 255] (the range 
of an 8-bit integer). Think of this 8-bit value as brightness, with 0 being black 
and 255 being white and the values in between being shades of gray. 

Next, it will split the image into a grid of M×N tiles (where M is the num-
ber of rows and N the number of columns in the ASCII image). The program 
will then calculate the average brightness value for each tile in the grid and 
match it with an appropriate ASCII character by predefining a ramp (an 
increasing set of values) of ASCII characters to represent grayscale values in 
the range [0, 255]. It will use these values as a lookup table for the bright-
ness values.

The finished ASCII art is just a bunch of lines of text. To display the 
text, you’ll use a constant-width (also called monospace) font such as Courier 
because unless each text character has the same width, the characters in the 
image won’t line up properly along a grid and you’ll end up with unevenly 
spaced and scrambled output. 

The aspect ratio (the ratio of width to height) of the font used also 
affects the final image. If the aspect ratio of the space taken up by a char-
acter is different from the aspect ratio of the image tile the character is 
replacing, the final ASCII image will appear distorted. In effect, you’re try-
ing to replace an image tile with an ASCII character, so their shapes need 
to match. For example, if you were to split your image into square tiles and 
then replace each of the tiles with a font that is stretched in height, the final 
output would appear stretched vertically.

To address this issue, you’ll scale the rows in your grid to match the 
Courier aspect ratio. (You can send the program command line arguments 
to modify the scaling to match other fonts.)

In sum, here are the steps the program takes to generate the ASCII 
image:

1. Convert the input image to grayscale.

2. Split the image into M×N tiles.

3. Correct M (the number of rows) to match the image and font aspect 
ratio.
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4. Compute the average brightness for each image tile and then look up a 
suitable ASCII character for each.

5. Assemble rows of ASCII character strings and print them to a file to 
form the final image.

requirements
In this project, you’ll use Pillow, the friendly fork of the Python Imaging 
Library, to read in the images, access their underlying data, and create and 
modify them. You’ll also use the numpy library to compute averages.

the code
You’ll begin by defining the grayscale levels used to generate the ASCII 
art. Then you’ll look at how the image is split into tiles and how average 
brightness is computed for those tiles. Next, you’ll work on replacing the 
tiles with ASCII characters to generate the final output. Finally, you’ll set up 
command line parsing for the program to allow a user to specify the output 
size, output filename, and so on.

For the full project code, skip to “The Complete Code” on page 95.

Defining the Grayscale Levels and Grid
As the first step in creating your program, define the two grayscale levels 
used to convert brightness values to ASCII characters as global values.

# 70 levels of gray
u gscale1 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^

          `". "
# 10 levels of gray

v gscale2 = "@%#*+=-:. "

The value gscale1 at u is the 70-level grayscale ramp, and gscale2 at v 
is the simpler 10-level grayscale ramp. Both of these values are stored as 
strings, with a range of characters that progress from darkest to lightest. 
(To learn more about how characters are represented as grayscale values, 
see Paul Bourke’s “Character Representation of Grey Scale Images” at 
http://paulbourke.net/dataformats/asciiart/.) 

Now that you have your grayscale ramps, you can set up the image. The 
following code opens the image and splits it into a grid:

    # open the image and convert to grayscale
u     image = Image.open(fileName).convert("L")

    # store the image dimensions
v     W, H = image.size[0], image.size[1]

    # compute the tile width
w     w = W/cols

http://paulbourke.net/dataformats/asciiart/
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    # compute the tile height based on the aspect ratio and scale of the font
x     h = w/scale

    # compute the number of rows to use in the final grid
y     rows = int(H/h) 

At u, Image.open() opens the input image file and Image.convert() con-
verts the image to grayscale. The "L" stands for luminance, a measure of the 
brightness of an image. 

At v, you store the width and height of the input image. At w, you 
compute the width of a tile for the number of columns (cols) specified by 
the user. (The program uses a default of 80 columns if the user doesn’t set 
another value in the command line.) For the division at w, use floating-
point, not integer division, in order to avoid truncation errors while calcu-
lating the dimensions of the tiles.

Once you know the width of a tile, you compute its height at x using 
the vertical scale factor passed in as scale. At y, use this grid height to com-
pute the number of rows.

The scale factor sizes each tile to match the aspect ratio of the font you 
are using to display the text so that the final image won’t be distorted. The 
value for scale can be passed in as an argument, or it’s set to a default of 
0.43, which works well for displaying the result in Courier. 

Computing the Average Brightness
Next, you compute the average brightness for a tile in the grayscale image. 
The function getAverageL() does the job.

u def getAverageL(image):
    # get the image as a numpy array

v     im = np.array(image)
    # get the dimensions

w     w,h = im.shape
    # get the average

x     return np.average(im.reshape(w*h))

At u, the image tile is passed in as a PIL Image object. Convert image into a 
numpy array at v, at which point im becomes a two-dimensional array of bright-
ness for each pixel. At w, you store the dimensions (width and height) of the 
image. At x, numpy.average() computes the average of the bright ness values 
in the image by using numpy.reshape() to first convert the two-dimensional 
array of the dimensions width and height (w,h) into a flat one-dimensional 
array whose length is a product of the width times the height (w*h). The 
numpy.average() call then sums these array values and computes the average.

Generating the ASCII Content from the Image
The main part of the program generates the ASCII content from the image.

    # an ASCII image is a list of character strings
u     aimg = []
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    # generate the list of tile dimensions
    for j in range(rows):

v         y1 = int(j*h)
        y2 = int((j+1)*h)
        # correct the last tile
        if j == rows-1:
            y2 = H
        # append an empty string

w         aimg.append("")
        for i in range(cols):
            # crop the image to fit the tile

x             x1 = int(i*w)
            x2 = int((i+1)*w)
            # correct the last tile

y             if i == cols-1:
                x2 = W
            # crop the image to extract the tile into another Image object

z             img = image.crop((x1, y1, x2, y2))
            # get the average luminance

{             avg = int(getAverageL(img))
            # look up the ASCII character for grayscale value (avg)
            if moreLevels:

|                 gsval = gscale1[int((avg*69)/255)]
            else:

}                 gsval = gscale2[int((avg*9)/255)]
            # append the ASCII character to the string

~             aimg[j] += gsval

In this section of the program, the ASCII image is first stored as a list 
of strings, which is initialized at u. Next, you iterate through the calculated 
number of row image tiles, and at v and the following line, you calculate 
the starting and ending y-coordinates of each image tile. Although these 
are floating-point calculations, truncate them to integers before passing 
them to an image-cropping method. 

Next, because dividing the image into tiles creates edge tiles of the same 
size only when the image width is an integer multiple of the number of col-
umns, correct for the y-coordinate of the tiles in the last row by setting the 
y-coordinate to the image’s actual height. By doing so, you ensure that the 
top edge of the image isn’t truncated.

At w, you add an empty string into the ASCII as a compact way to rep-
resent the current image row. You’ll fill in this string next. (You treat the 
string as a list of characters.) 

At x and the next line, you compute the left and right x-coordinates of 
each tile, and at y, you correct the x-coordinate for the last tile for the same 
reasons you corrected the y-coordinate. Use image.crop() at z to extract the 
image tile and then pass that tile to the getAverageL() function {, defined 
in “Computing the Average Brightness” on page 93, to get the average 
brightness of the tile. At }, you scale down the average brightness value 
from [0, 255] to [0, 9] (the range of  values for the default 10-level grayscale 
ramp). You then use gscale2 (the stored ramp string) as a lookup table for 
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the relevant ASCII value. The line at | is similar, except that it’s used only 
when the command line flag is set to use the ramp with 70 levels. Finally, 
you append the looked-up ASCII value, gsval, to the text row at ~, and the 
code loops until all rows are processed.

Command Line Options
Next, define some command line options for the program. This code uses 
the built-in argparse class:

    parser = argparse.ArgumentParser(description="descStr")
    # add expected arguments

u     parser.add_argument('--file', dest='imgFile', required=True)
v     parser.add_argument('--scale', dest='scale', required=False)
w     parser.add_argument('--out', dest='outFile', required=False)
x     parser.add_argument('--cols', dest='cols', required=False)
y     parser.add_argument('--morelevels', dest='moreLevels', action='store_true')

At u, you include options to specify the image file to input (the only 
required argument) and to set the vertical scale factor v, the output file-
name w, and the number of text columns in the ASCII output x. At y, you 
add a --morelevels option so the user can select the grayscale ramp with 
more levels.

Writing the ASCII Art Strings to a Text File
Finally, take the generated list of ASCII character strings and write those 
strings to a text file:

    # open a new text file
u     f = open(outFile, 'w')

    # write each string in the list to the new file
v     for row in aimg:

        f.write(row + '\n')
    # clean up

w     f.close()

At u, you use the built-in open() method to open a new text file for writ-
ing. Then you iterate through each string in the list and write it to the file 
at v. At w, you close the file object to release system resources.

the complete code
Here is the complete ASCII art program. You can also download the code 
for this project from https://github.com/electronut/pp/blob/master/ascii/ascii.py.

import sys, random, argparse
import numpy as np
import math



96   Chapter 6

from PIL import Image

# grayscale level values from: 
# http://paulbourke.net/dataformats/asciiart/

# 70 levels of gray
gscale1 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^
          `'. "
# 10 levels of gray
gscale2 = '@%#*+=-:. '

def getAverageL(image):
    """
    Given PIL Image, return average value of grayscale value
    """
    # get image as numpy array
    im = np.array(image)
    # get the dimensions
    w,h = im.shape
    # get the average
    return np.average(im.reshape(w*h))

def covertImageToAscii(fileName, cols, scale, moreLevels):
    """
    Given Image and dimensions (rows, cols), returns an m*n list of Images 
    """
    # declare globals
    global gscale1, gscale2
    # open image and convert to grayscale
    image = Image.open(fileName).convert('L')
    # store the image dimensions
    W, H = image.size[0], image.size[1]
    print("input image dims: %d x %d" % (W, H))
    # compute tile width
    w = W/cols
    # compute tile height based on the aspect ratio and scale of the font
    h = w/scale
    # compute number of rows to use in the final grid
    rows = int(H/h)
    
    print("cols: %d, rows: %d" % (cols, rows))
    print("tile dims: %d x %d" % (w, h))

    # check if image size is too small
    if cols > W or rows > H:
        print("Image too small for specified cols!")
        exit(0)

    # an ASCII image is a list of character strings
    aimg = []
    # generate the list of tile dimensions
    for j in range(rows):
        y1 = int(j*h)
        y2 = int((j+1)*h)
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        # correct the last tile
        if j == rows-1:
            y2 = H
        # append an empty string
        aimg.append("")
        for i in range(cols):
            # crop the image to fit the tile
            x1 = int(i*w)
            x2 = int((i+1)*w)
            # correct the last tile
            if i == cols-1:
                x2 = W
            # crop the image to extract the tile into another Image object
            img = image.crop((x1, y1, x2, y2))
            # get the average luminance
            avg = int(getAverageL(img))
            # look up the ASCII character for grayscale value (avg)
            if moreLevels:
                gsval = gscale1[int((avg*69)/255)]
            else:
                gsval = gscale2[int((avg*9)/255)]
            # append the ASCII character to the string
            aimg[j] += gsval
    
    # return text image
    return aimg

# main() function
def main():
    # create parser
    descStr = "This program converts an image into ASCII art."
    parser = argparse.ArgumentParser(description=descStr)
    # add expected arguments
    parser.add_argument('--file', dest='imgFile', required=True)
    parser.add_argument('--scale', dest='scale', required=False)
    parser.add_argument('--out', dest='outFile', required=False)
    parser.add_argument('--cols', dest='cols', required=False)
    parser.add_argument('--morelevels', dest='moreLevels', action='store_true')

    # parse arguments
    args = parser.parse_args()
  
    imgFile = args.imgFile
    # set output file
    outFile = 'out.txt'
    if args.outFile:
        outFile = args.outFile
    # set scale default as 0.43, which suits a Courier font
    scale = 0.43
    if args.scale:
        scale = float(args.scale)
    # set cols
    cols = 80
    if args.cols:
        cols = int(args.cols)
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    print('generating ASCII art...')
    # convert image to ASCII text
    aimg = covertImageToAscii(imgFile, cols, scale, args.moreLevels)

    # open a new text file
    f = open(outFile, 'w')
    # write each string in the list to the new file
    for row in aimg:
        f.write(row + '\n')
    # clean up
    f.close()
    print("ASCII art written to %s" % outFile)

# call main
if __name__ == '__main__':
    main()

running the ascII art generator
To run your finished program, enter a command like the following one, 
replacing data/robot.jpg with the relative path to the image file you want 
to use. 

$ python ascii.py --file data/robot.jpg --cols 100

Figure 6-3 shows the ASCII art that results from sending the image 
robot.jpg (at the left).

Figure 6-3: Sample run of ascii .py

Now you are all set to create your own ASCII art!
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summary
In this project, you learned how to generate ASCII art from any input image. 
You also learned how to convert an image to grayscale by computing aver-
age brightness values and how to replace part of an image with a character 
based on the grayscale value. Have fun creating your own ASCII art!

experiments!
Here are some ideas for exploring ASCII art further.

1. Run the program with the command line option --scale 1.0. How 
does the resulting image look? Experiment with different values 
for scale. Copy the output to a text editor and try setting the text to 
 different (fixed-width) fonts to see how doing so affects the appearance 
of the final image. 

2. Add the command line option --invert to the program to invert the 
ASCII art input values so that black appears white, and vice versa. 
(Hint: try subtracting the tile brightness value from 255 during lookup.)

3. In this project, you created lookup tables for grayscale values based on 
two-character hard-coded ramps. Implement a command line option to 
pass in a different character ramp to create the ASCII art, like so:

 python3 ascii.py --map "@$%^`." 

A ramp like the previous one should create the ASCII output using 
the given six-character ramp, where @ maps to a brightness value of 0 
and . maps to a value of 255. 





7
P h o t o m o s a i C s

When I was in the sixth grade, I saw a 
 picture like the one shown in Figure 7-1 

but couldn’t quite figure out what it was. 
After squinting at it for a while, I eventually fig-

ured it out. (Turn the book upside down, and view it 
from across the room. I won’t tell anyone.) 

A photomosaic is an image split into a grid of rectangles, with each 
replaced by another image that matches the target (the image you ulti-
mately want to appear in the photomosaic). In other words, if you look at 
a photomosaic from a distance, you see the target image; but if you come 
closer, you will see that the image actually consists of many smaller images.

The puzzle works because of how the human eye functions. The low-
resolution, blocky image shown in Figure 7-1 is hard to recognize up close, 
but when seen from a distance, you know what it represents because you 
perceive less detail, which makes the edges smooth. A photomosaic works 
according to a similar principle. From a distance, the image looks normal, 
but up close, the secret is revealed—each “block” is a unique image! 
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Figure 7-1: A puzzling image

In this project, you’ll learn how to create photomosaics using Python. 
You’ll divide a target image into a grid of smaller images and replace each 
block in the grid with a suitable image to create a photomosaic of the origi-
nal image. You’ll be able to specify the grid dimensions and choose whether 
input images can be reused in the mosaic.

In this project, you’ll learn how to do the following: 

•	 Create images using the Python Imaging Library (PIL).

•	 Compute the average RGB value of an image.

•	 Crop images.

•	 Replace part of an image by pasting in another image.

•	 Compare RGB values using a measurement of average distance.

how It works
To create a photomosaic, begin with a blocky, low-resolution version of 
the target image (because the number of tile images would be too great 
in a high-resolution image). The resolution of this image will determine the 
dimensions M×N (where M is the number of rows and N is the number of 
columns) of the mosaic. Next, replace each tile in the original image accord-
ing to this methodology:

1. Read the tile images, which will replace the tiles in the original image.

2. Read the target image and split it into an M×N grid of tiles. 
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3. For each tile, find the best match from the input images.

4. Create the final mosaic by arranging the selected input images in an 
M×N grid.

Splitting the Target Image
Begin by splitting the target image into an M×N grid according to the 
scheme shown in Figure 7-2.

i (0 to w*nrows) 

w

h

j (
0 

to
 h

*n
co

ls)

(i*w, i*j)

((i+1)*w, (j+1)*h)

Figure 7-2: Splitting the target image

The image in Figure 7-2 shows how you can split the original image into 
a grid of tiles. The x-axis represents the grid columns, and the y-axis rep-
resents the grid rows. 

Now let’s look at how to calculate the coordinates for a single tile from 
this grid. The tile with index (i, j) has a top-left corner coordinate of (i*w, 
i*j) and a bottom-right corner coordinate of ((i+1)*w, (j+1)*h), where w 
and h stand for the width and height of a tile, respectively. These can be 
used with the PIL to crop and create a tile from this image.

Averaging Color Values
Every pixel in an image has a color that can be represented by its red, 
green, and blue values. In this case, you are using 8-bit images, so each 
of these components has an 8-bit value in the range [0, 255]. Given an 
image with a total of N pixels, the average RGB is calculated as follows:
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Note that the average RGB is also a triplet, not a scalar or single num-
ber, because the averages are calculated separately for each color com-
ponent. You calculate the average RGB to match the tiles with the target 
image. 
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Matching Images
For each tile in the target image, you need to find a matching image from 
the images in the input folder specified by the user. To determine whether 
two images match, use the average RGB values. The closest match is the 
image with the closest average RGB value.

The simplest way to do this is to calculate the distance between the RGB 
values in a pixel to find the best match among the input images. You can 
use the following distance calculation for 3D points from geometry:

D r r g g b b1 2 1 2
2

1 2
2

1 2
2

, = −( ) + −( ) + −( )
Here you compute the distance between the points (r1, g1, b1) and  

(r2, g2, b2). Given a target average RGB value and a list of average RGB 
 values from the input images, you can use a linear search and the distance 
calculation for 3D points to find the closest matching image.

requirements
For this project, you’ll use Pillow to read in the images, access their underly-
ing data, and create and modify the images. You’ll also use numpy to manipu-
late image data.

the code
You’ll begin by reading in the tile images that you’ll use to create the photo-
mosaic. Next, you’ll compute the average RGB value of the images, and 
then split the target into a grid of images and find the best matches for 
tiles. Finally, you’ll assemble the image tiles to create the final photomosaic. 
To see the complete project code, skip ahead to “The Complete Code” on 
page 110.

Reading in the Tile Images
First, read in the input images from the given folder. Here’s how to do that:

def getImages(imageDir):
    """
    given a directory of images, return a list of Images
    """

u     files = os.listdir(imageDir)
    images = []
    for file in files:

v         filePath = os.path.abspath(os.path.join(imageDir, file))
        try:
            # explicit load so we don't run into resource crunch

w             fp = open(filePath, "rb")
            im = Image.open(fp)
            images.append(im)
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            # force loading the image data from file
x             im.load() 

            # close the file
y             fp.close() 

        except:
            # skip
            print("Invalid image: %s" % (filePath,))
    return images

At u, you use os.listdir() to gather the files in the imageDir directory 
in a list. Next, you iterate through each file in the list and load it into a PIL 
Image object. 

At v, you use os.path.abspath() and os.path.join() to get the complete 
filename of the image. This idiom is commonly used in Python to ensure 
that your code will work with both relative paths (for example, \foo\bar) 
and absolute paths (c:\foo\bar\), as well as across operating systems with dif-
ferent directory-naming conventions ( \ in Windows versus / in Linux). 

To load the files into PIL Image objects, you could pass each filename 
to the Image.open() method, but if your photo mosaic folder had hundreds 
or even thousands of images, doing so would be highly resource intensive. 
Instead, you can use Python to open each tile image and pass the file handle 
fp into PIL using Image.open(). Once the image has been loaded, close the 
file handle and release the system resources. 

At w, you open the image file using open(). In the lines that follow, you 
pass the handle to Image.open() and store the resulting image, im, in an array. 

You call Image.load() at x to force load the image data inside im because 
open() is a lazy operation. It identifies the image but doesn’t actually read all 
the image data until you try to use the image. 

At y, you close the file handle to release system resources.

Calculating the Average Color Value of the Input Images
Once you’ve read in the input images, you need to calculate their average 
color value, as well as the value for each tile in the target. Create a method 
getAverageRGB() to compute both values.

def getAverageRGB(image):
    """
    return the average color value as (r, g, b) for each input image
    """
    # get each tile image as a numpy array

u     im = np.array(image)
    # get the shape of each input image

v     w,h,d = im.shape
    # get the average RGB value

w     return tuple(np.average(im.reshape(w*h, d), axis=0))

At u, you use numpy to convert each Image object into a data array. The 
numpy array returned has the shape (w, h, d), where w is the weight of the 
image, h is the height, and d is the depth, which, in this case, is three units 
(one each for R, G, and B) for RGB images. You store the shape tuple at v 
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and then compute the average RGB value by reshaping this array into a 
more convenient form with shape (w*h, d) so that you can compute the 
average using numpy.average() w.

Splitting the Target Image into a Grid
Now you need to split the target image into an M×N grid of smaller images. 
Let’s create a method to do that.

def splitImage(image, size):
    """
    given the image and dimensions (rows, cols), return an m*n list of images 
    """

u     W, H = image.size[0], image.size[1]
v     m, n = size
w     w, h = int(W/n), int(H/m)

    # image list
    imgs = []
    # generate a list of dimensions
    for j in range(m):
        for i in range(n):
            # append cropped image

x         imgs.append(image.crop((i*w, j*h, (i+1)*w, (j+1)*h)))
    return imgs

First, you gather the dimensions of the target image at u and the grid 
size at v. At w, you calculate the dimensions of each tile in the target image 
using basic division. 

Now you need to iterate through the grid dimensions and cut out 
and store each tile as a separate image. At x, image.crop() crops out a por-
tion of the image using the upper-left image coordinates and the dimen-
sions of the cropped image as arguments (as discussed in “Splitting the 
Target Image” on page 103).

Finding the Best Match for a Tile
Now let’s find the best match for a tile from the folder of input images. You 
create a utility method, getBestMatchIndex(), as follows:

def getBestMatchIndex(input_avg, avgs):
    """
    return index of the best image match based on average RGB value distance
    """

    # input image average
    avg = input_avg

    # get the closest RGB value to input, based on RGB distance
    index = 0

u     min_index = 0
v     min_dist = float("inf")
w     for val in avgs:



Photomosaics   107

x         dist = ((val[0] - avg[0])*(val[0] - avg[0]) +
                (val[1] - avg[1])*(val[1] - avg[1]) +
                (val[2] - avg[2])*(val[2] - avg[2]))

y         if dist < min_dist:
            min_dist = dist
            min_index = index
        index += 1

    return min_index 

You are trying to find the closest match for the average RGB value, 
input_avg, from the list avgs. The latter is a list of average RGB values from 
the tile images. 

To find the best match, you compare the average RGB values of the 
input images. At u and v, you initialize the closest match index to 0 and 
the minimum distance to infinity. This test will always pass the first time 
since any distance will be less than infinity. At w, you loop through the 
values in the list of averages and start computing distances at x using the 
standard formula. (You compare squares of distance to reduce computation 
time.) If the computed distance is less than the stored minimum distance 
min_dist, it is replaced with the new minimum distance at y. At the end of 
the iteration, you have the index of the average RGB value from the avgs list 
that is closest to input_avg. Now you can use this index to select the match-
ing tile image from the list of tile images.

Creating an Image Grid
You need one more utility method before moving on to photomosaic 
 creation. The createImageGrid() method will create a grid of images of size 
M×N. This image grid is the final photomosiac image, created from the 
list of selected tile images.

def createImageGrid(images, dims):
    """
    given a list of images and a grid size (m, n), create a grid of images 
    """

u     m, n = dims

    # sanity check
    assert m*n == len(images)

    # get the maximum height and width of the images
    # don't assume they're all equal

v     width = max([img.size[0] for img in images])
    height = max([img.size[1] for img in images])

    # create the target image
w     grid_img = Image.new('RGB', (n*width, m*height))

    # paste the tile images into the image grid
    for index in range(len(images)):

x         row = int(index/n)
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y         col = index - n*row
z         grid_img.paste(images[index], (col*width, row*height))

    return grid_img

At u, you gather the dimensions of the grid and then use assert to see 
whether the number of images supplied to createImageGrid() matches the 
grid size. (The assert method checks assumptions in your code, especially 
during development and testing.) Now you have a list of tile images based 
on the closest RGB match, which you’ll use to create an image grid rep-
resenting the photomosaic. Some of the selected images may not fill a tile 
exactly because of differences in their sizes, but that won’t be a problem 
because you’ll fill the tile with a black background first. 

At v and in the following line, you compute the maximum width 
and height of the tile images. (You haven’t made any assumptions regard-
ing the size of the selected input images; the code will work whether they’re 
the same or different.) If the input images won’t completely fill a tile, the 
spaces between the tiles will show as the background color, which is black 
by default. 

At w, you create an empty Image sized to fit all images in the grid; you’ll 
paste the tile images into this. Then you fill the image grid. At z, you loop 
through the selected images and paste them into the appropriate grid using 
the Image.paste() method. The first argument to Image.paste() is the Image 
object to be pasted, and the second is the top-left coordinate. Now you need 
to figure out in which row and column to paste a tile image into the image 
grid. To do so, you express the image index in terms of rows and columns. 
The index of a tile in the image grid is given by N*row + col, where N is the 
number of cells along the width and (row, col) is the coordinate in this grid; 
at x, you give the row from the previous formula and at y the column.

Creating the Photomosaic
Now that you have all the required utilities, let’s write the main function 
that creates the photomosaic.

def createPhotomosaic(target_image, input_images, grid_size, reuse_images=True):
    """
    creates a photomosaic given target and input images
    """

    print('splitting input image...')
    # split the target image into tiles

u     target_images = splitImage(target_image, grid_size)

    print('finding image matches...')
    # for each tile, pick one matching input image
    output_images = []
    # for user feedback
    count = 0

v     batch_size = int(len(target_images)/10)
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    # calculate the average of the input image
    avgs = []
    for img in input_images:

w         avgs.append(getAverageRGB(img))

    for img in target_images:
        # compute the average RGB value of the image

x         avg = getAverageRGB(img)
        # find the matching index of closest RGB value
        # from a list of average RGB values

y         match_index = getBestMatchIndex(avg, avgs)
z         output_images.append(input_images[match_index])

        # user feedback
{         if count > 0 and batch_size > 10 and count % batch_size is 0:

            print('processed %d of %d...' %(count, len(target_images)))
        count += 1
        # remove the selected image from input if flag set

|         if not reuse_images:
            input_images.remove(match)

    print('creating mosaic...')
    # create photomosaic image from tiles

}     mosaic_image = createImageGrid(output_images, grid_size)

    # display the mosaic
    return mosaic_image

The createPhotomosaic() method takes as input the target, the list of 
input images, the size of the generated photomosaic, and a flag that indicates 
whether an image can be reused. At u, it splits the target into a grid. Once 
the image is split, you find matches for each tile from the images in the input 
folder. (Because this process can be lengthy, you provide feedback to users 
to let them know that the program is still working.)

At v, you set batch_size to one-tenth the total number of tile images. 
This variable will be used to update the user in the code at {. (The choice 
of one-tenth is arbitrary and simply a way for the program to say “I’m still 
alive.” Each time the program processes a tenth of the images, it prints a 
message indicating that it’s still running.)

At w, you compute the average RGB value for each image in the input 
folder and store that value in the list avgs. Then you start iterating through 
each tile in the target image grid. For each tile, you calculate the average 
RGB value x; then, at y, you search for the closest match to this value in 
the list of averages for the input images. The result is returned as an index, 
which you use at z to retrieve the Image object and store it in a list. 

At {, for every batch_size number of images processed, you print a 
message to the user. At |, if the reuse_images flag is set to False, you remove 
the selected input image from the list so that it won’t be reused in another 
tile. (This works best when you have a wide range of input images to choose 
from.) Finally, at }, you combine the images to create the final photomosaic.
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Adding the Command Line Options
The main() method of the program supports these command line options:

    # parse arguments
    parser = argparse.ArgumentParser(description='Creates a photomosaic from 
                                     input images')
    # add arguments
    parser.add_argument('--target-image', dest='target_image', required=True)
    parser.add_argument('--input-folder', dest='input_folder', required=True)
    parser.add_argument('--grid-size', nargs=2, dest='grid_size', required=True)
    parser.add_argument('--output-file', dest='outfile', required=False) 

This code contains three required command line parameters: the name 
of the target, the name of the input folder of images, and the grid size. The 
fourth parameter is for the optional filename. If the filename is omitted, 
the photomosaic will be written to a file named mosaic.png.

Controlling the Size of the Photomosaic
One last issue to address is the size of the photomosaic. If you were to 
blindly paste the input images together based on matching tiles in the tar-
get, you could end up with a huge photomosaic that is much bigger than 
the target. To avoid this, resize the input images to match the size of each 
tile in the grid. (This has the added benefit of speeding up the average 
RGB computation since you’re using smaller images.) The main() method 
also handles this:

        print('resizing images...')
        # for given grid size, compute the maximum width and height of tiles

u         dims = (int(target_image.size[0]/grid_size[1]), 
                int(target_image.size[1]/grid_size[0])) 
        print("max tile dims: %s" % (dims,))
        # resize
        for img in input_images:

v             img.thumbnail(dims)

You compute the target dimensions at u based on the specified grid 
size; then, at v, you use the PIL Image.thumbnail() method to resize the 
images to fit those dimensions.

the complete code
You can find the complete code for the project at https://github.com/electronut/ 
pp/tree/master/photomosaic/photomosaic.py.

import sys, os, random, argparse
from PIL import Image
import imghdr
import numpy as np

https://github.com/electronut/pp/tree/master/photomosaic/photomosaic.py
https://github.com/electronut/pp/tree/master/photomosaic/photomosaic.py
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def getAverageRGB(image):
    """
    return the average color value as (r, g, b) for each input image
    """
    # get each tile image as a numpy array
    im = np.array(image)
    # get the shape of each input image
    w,h,d = im.shape
    # get the average RGB value
    return tuple(np.average(im.reshape(w*h, d), axis=0))

def splitImage(image, size):
    """
    given the image and dimensions (rows, cols), returns an m*n list of images 
    """
    W, H = image.size[0], image.size[1]
    m, n = size
    w, h = int(W/n), int(H/m)
    # image list
    imgs = []
    # generate a list of dimensions
    for j in range(m):
        for i in range(n):
            # append cropped image
            imgs.append(image.crop((i*w, j*h, (i+1)*w, (j+1)*h)))
    return imgs

def getImages(imageDir):
    """
    given a directory of images, return a list of Images
    """
    files = os.listdir(imageDir)
    images = []
    for file in files:
        filePath = os.path.abspath(os.path.join(imageDir, file))
        try:
            # explicit load so we don't run into a resource crunch
            fp = open(filePath, "rb")
            im = Image.open(fp)
            images.append(im)
            # force loading image data from file
            im.load() 
            # close the file
            fp.close() 
        except:
            # skip
            print("Invalid image: %s" % (filePath,))
    return images

def getImageFilenames(imageDir):
    """
    given a directory of images, return a list of image filenames
    """
    files = os.listdir(imageDir)
    filenames = []
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    for file in files:
        filePath = os.path.abspath(os.path.join(imageDir, file))
        try:
            imgType = imghdr.what(filePath) 
            if imgType:
                filenames.append(filePath)
        except:
            # skip
            print("Invalid image: %s" % (filePath,))
    return filenames

def getBestMatchIndex(input_avg, avgs):
    """
    return index of the best image match based on average RGB value distance
    """

    # input image average
    avg = input_avg
  
    # get the closest RGB value to input, based on RGB distance
    index = 0
    min_index = 0
    min_dist = float("inf")
    for val in avgs:
        dist = ((val[0] - avg[0])*(val[0] - avg[0]) +
                (val[1] - avg[1])*(val[1] - avg[1]) +
                (val[2] - avg[2])*(val[2] - avg[2]))
        if dist < min_dist:
            min_dist = dist
            min_index = index
        index += 1

    return min_index

def createImageGrid(images, dims):
    """
    given a list of images and a grid size (m, n), create a grid of images
    """
    m, n = dims

    # sanity check
    assert m*n == len(images)

    # get the maximum height and width of the images
    # don't assume they're all equal
    width = max([img.size[0] for img in images])
    height = max([img.size[1] for img in images])

    # create the target image
    grid_img = Image.new('RGB', (n*width, m*height))
  
    # paste the tile images into the image grid
    for index in range(len(images)):
        row = int(index/n)
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        col = index - n*row
        grid_img.paste(images[index], (col*width, row*height))
    
    return grid_img

def createPhotomosaic(target_image, input_images, grid_size, reuse_images=True):
    """
    creates photomosaic given target and input images
    """

    print('splitting input image...')
    # split the target image into tiles
    target_images = splitImage(target_image, grid_size)

    print('finding image matches...')
    # for each tile, pick one matching input image
    output_images = []
    # for user feedback
    count = 0
    batch_size = int(len(target_images)/10)

    # calculate the average of the input image
    avgs = []
    for img in input_images:
        avgs.append(getAverageRGB(img))

    for img in target_images:
        # compute the average RGB value of the image
        avg = getAverageRGB(img)
        # find the matching index of closest RGB value
        # from a list of average RGB values
        match_index = getBestMatchIndex(avg, avgs)
        output_images.append(input_images[match_index])
        # user feedback
        if count > 0 and batch_size > 10 and count % batch_size is 0:
            print('processed %d of %d...' %(count, len(target_images)))
        count += 1
        # remove the selected image from input if flag set
        if not reuse_images:
            input_images.remove(match)

    print('creating mosaic...')
    # create photomosaic image from tiles
    mosaic_image = createImageGrid(output_images, grid_size)

    # display the mosaic
    return mosaic_image

# gather our code in a main() function
def main():
    # command line arguments are in sys.argv[1], sys.argv[2], ...
    # sys.argv[0] is the script name itself and can be ignored
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    # parse arguments
    parser = argparse.ArgumentParser(description='Creates a photomosaic from 
                                     input images')
    # add arguments
    parser.add_argument('--target-image', dest='target_image', required=True)
    parser.add_argument('--input-folder', dest='input_folder', required=True)
    parser.add_argument('--grid-size', nargs=2, dest='grid_size', required=True)
    parser.add_argument('--output-file', dest='outfile', required=False) 

    args = parser.parse_args()

    ###### INPUTS ######

    # target image
    target_image = Image.open(args.target_image)

    # input images
    print('reading input folder...')
    input_images = getImages(args.input_folder)

    # check if any valid input images found  
    if input_images == []:
        print('No input images found in %s. Exiting.' % (args.input_folder, ))
        exit()

    # shuffle list to get a more varied output?
    random.shuffle(input_images)

    # size of the grid
    grid_size = (int(args.grid_size[0]), int(args.grid_size[1]))

    # output
    output_filename = 'mosaic.png'
    if args.outfile:
        output_filename = args.outfile
  
    # reuse any image in input
    reuse_images = True

    # resize the input to fit the original image size?
    resize_input = True

    ##### END INPUTS #####

    print('starting photomosaic creation...')
  
    # if images can't be reused, ensure m*n <= num_of_images 
    if not reuse_images:
        if grid_size[0]*grid_size[1] > len(input_images):
            print('grid size less than number of images')
            exit()
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    # resizing input
    if resize_input:
        print('resizing images...')
        # for given grid size, compute the maximum width and height of tiles
        dims = (int(target_image.size[0]/grid_size[1]), 
                int(target_image.size[1]/grid_size[0])) 
        print("max tile dims: %s" % (dims,))
        # resize
        for img in input_images:
            img.thumbnail(dims)

    # create photomosaic
    mosaic_image = createPhotomosaic(target_image, input_images, grid_size,
                                     reuse_images)

    # write out mosaic
    mosaic_image.save(output_filename, 'PNG')

    print("saved output to %s" % (output_filename,))
    print('done.')

# standard boilerplate to call the main() function
# to begin the program
if __name__ == '__main__':
    main()

running the Photomosaic generator
Here is a sample run of the program:

$ python photomosaic.py --target-image test-data/cherai.jpg --input-folder 
test-data/set6/ --grid-size 128 128
reading input folder...
starting photomosaic creation...
resizing images...
max tile dims: (23, 15)
splitting input image...
finding image matches...
processed 1638 of 16384 ...
processed 3276 of 16384 ...
processed 4914 of 16384 ...
creating mosaic...
saved output to mosaic.png
done.

Figure 7-3(a) shows the target image, and Figure 7-3(b) shows the 
photomosaic. You can see a close-up of the photomosaic in Figure 7-3(c).
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Figure 7-3: Photomosaic sample run

summary
In this project, you learned how to create a photomosaic, given a target 
image and a collection of input images. When viewed from a distance, the 
photomosaic looks like the original image, but up close, you can see the 
individual images that make up the mosaic. 

experiments!
Here are some ways to further explore photomosaics.

1. Write a program that creates a blocky version of any image, similar to 
Figure 7-1.

2. With the code in this chapter, you created the photomosaic by pasting 
the matched images without any gaps in between. A more artistic pre-
sentation might include a uniform gap of a few pixels around each tile 
image. How would you create the gap? (Hint: factor in the gaps when 
computing the final image dimensions and when doing the paste in 
createImageGrid().) 

3. Most of the time in the program is spent finding the best match for a 
tile from the input folder. To speed up the pro gram, getBestMatchIndex() 
needs to run faster. Your implementation of this method was a simple 
linear search through the list of averages (treated as three-dimensional 
points). This task falls under the general problem of a nearest neighbor 
search. One particularly effective way to find the closest point is a k-d 
tree search. The scipy library has a convenient class called scipy.spatial 
.KDTree, which lets you create a k -d and query it for the nearest point 
matches. Try replacing the linear search with a k -d tree using SciPy. 
(See http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree 
.html.)

http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html


8
a u t o s t e r e o g r a m s

Stare at Figure 8-1 for a minute. Do 
you see anything other than random 

dots? Figure 8-1 is an autostereogram, a two- 
dimensional image that creates the illusion 

of three dimensions. Auto stereo grams usually con-
sist of repeating patterns that resolve into three
dimensions on closer inspection. If you can’t see any sort of image, don’t 
worry; it took me a while and a bit of experimentation before I could. (If 
you aren’t having any luck with the version printed in this book, try the 
color version here: https://github.com/ electronut/pp/images/. The footnote to 
the caption reveals what you should see.)

In this project, you’ll use Python to create an autostereogram. Here are 
some of the concepts covered in this project:

•	 Linear spacing and depth perception

•	 Depth maps

•	 Creating and editing images using Pillow

•	 Drawing into images using Pillow

global: change "(x, y) 
coordinates" to "x- and 
y-coordinates"

Prod: Make sure 
final images are 
sent to Au to post 
to github folder 
at this website 
link

https://github.com/electronut/pp/images
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Figure 8-1: A puzzling image that might gnaw at you1

The autostereograms you’ll generate in this project are designed for 
“wall-eyed” viewing. The best way to see them is to focus your eyes on a point 
behind the image (such as a wall). Almost magically, once you perceive some-
thing in the patterns, your eyes should automatically bring it into focus, and 
when the three-dimensional image “locks in,” you will have a hard time shak-
ing it off. (If you’re still having trouble viewing the image, see Gene Levin’s 
article “How to View Stereograms and Viewing Practice”2 for help.)

how It works
An autostereogram works by changing the linear spacing between pat-
terns in an image, thereby creating the illusion of depth. When you look 
at repeating patterns in an autostereogram, your brain can interpret the 
spacing as depth information, especially if there are multiple patterns with 
different spacing. 

Perceiving Depth in an Autostereogram
When your eyes converge at an imaginary point behind the image, your 
brain matches the points seen with your left eye with a different group 
seen by your right eye, and you see these points lying on a plane behind 
the image. The perceived distance to this plane depends on the amount 
of spacing in the pattern. For example, Figure 8-2 shows three rows of 
As. The As are equidistant within each row, but their horizontal spacing 
increases from top to bottom. 

1. The hidden image is a shark. 

2. http://colorstereo.com/texts_.txt/practice.htm

http://colorstereo.com/texts_.txt/practice.htm
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Figure 8-2: Linear spacing and depth perception

When this image is viewed “wall-eyed,” the top row in Figure 8-2 
should appear to be behind the paper, the middle row should look like it’s 
a little behind the first row, and the bottom row should appear farthest 
from your eye. The text that says floating text should appear to “float” on top 
of these rows.

Why does your brain interpret the spacing between these patterns as 
depth? Normally, when you look at a distant object, your eyes work together 
to focus and converge at the same point, with both eyes rotating inward to 
point directly at the object. But when viewing a “wall-eyed” autostereogram, 
focus and convergence happen at different locations. Your eyes focus on the 
autostereogram, but your brain sees the repeated patterns as coming from 
the same virtual (imaginary) object, and your eyes converge on a point 
behind the image, as shown in Figure 8-3. This combination of decoupled 
focus and convergence allows you to see depth in an autostereogram.

L R L R

Repeating pattern

Eyes Eyes

Convergence: Real distant objectConvergence: Perceived stereogram object

Fo
cu

s

Fo
cu

s

Figure 8-3: Seeing depth in autostereograms
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The perceived depth of the autostereogram depends on the horizontal 
spacing of pixels. Because the first row in Figure 8-2 has the closest spacing, 
it appears in front of the other rows. However, if the spacing of the points 
were varied in the image, your brain would perceive each point at a differ-
ent depth, and you could see a virtual three-dimensional image appear. 

Depth Maps
A depth map is an image where the value of each pixel represents a depth 
value, which is the distance from the eye to the part of the object repre-
sented by that pixel. Depth maps are often shown as a grayscale image with 
light areas for nearby points and darker areas for points farther away, as 
shown in Figure 8-4.

Figure 8-4: A depth map

Notice that the nose of the shark, the lightest part of the image, seems 
closest to you. The darker area toward the tail seems farthest away. 

Because the depth map represents the depth or distance from the 
center of each pixel to the eye, you can use it to get the depth value associ-
ated with a pixel location in the image. You know that horizontal shifts are 
perceived as depth in images. So if you shift a pixel in a (patterned) image 
proportionally to the corresponding pixel’s depth value, you would create 
a depth perception for that pixel consistent with the depth map. If you do 
this for all pixels, you will end up encoding the entire depth map into the 
image, creating an autostereogram.

Depth maps store depth values for each pixel, and the resolution of the 
value depends on the number of bits used to represent it. Because you will 
be using common 8-bit images in this chapter, depth values will be in the 
range [0, 255]. 

By the way, the image in Figure 8-4 is the same depth map used to 
 create the first autostereogram shown in Figure 8-1. You will soon learn 
how to do this yourself.

Production: add 
credit for image to 
copyright page: http://
en.wikipedia.org/wiki/
File:Stereogram_Tut_
Shark_Depthmap.png, 
Fred Hsu, March 2005. 
This file is licensed under 
the Creative Commons 
Attribution-Share Alike 
3.0 Unported license.)
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The code for this project will follow these steps:

1. Read in a depth map.

2. Read in a tile image or create a “random dot” tile.

3. Create a new image by repeating the tile. The dimensions of this image 
should match those of the depth map.

4. For each pixel in the new image, shift the pixel to the right by an 
amount proportional to the depth value associated with the pixel.

5. Write the autostereogram to a file.

requirements
In this project, you’ll use Pillow to read in images, access their underlying 
data, and create and modify images. 

the code
To create an autostereogram from an input depth map image, you’ll first 
generate an intermediate image by repeating a given tile image. Next you’ll 
create a tile image filled with random dots. You’ll then go through the core 
code that creates an autostereogram by shifting an input image using infor-
mation from a supplied depth map image. To see the complete project, skip 
ahead to “The Complete Code” on page 125.

Repeating a Given Tile
Let’s start by using the createTiledImage() method to tile a graphics file and 
create a new image with the dimensions specified by the tuple dims of the 
form (width, height).

# tile a graphics file to create an intermediate image of a set size
def createTiledImage(tile, dims):
    # create the new image

u     img = Image.new('RGB', dims)
    W, H = dims
    w, h = tile.size
    # calculate the number of tiles needed

v     cols = int(W/w) + 1
w     rows = int(H/h) + 1

    # paste the tiles into the image
    for i in range(rows):
        for j in range(cols):

x             img.paste(tile, (j*w, i*h))
    # output the image
    return img
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At u, you create a new Python Imaging Library (PIL) Image object using 
the supplied dimensions (dims). The dimensions of the new image are given 
as the tuple dims of the form (width, height). Next, store the width and height 
of both the tile and the output files. At v, you determine the number of col-
umns, and at w, you determine the number of rows you need to have in the 
intermediate image by dividing the final image dimension by those of the 
tile. Add 1 to each measurement to make sure that the last tile on the right 
is not missed when the output image dimension is not an exact integer 
multiple of the tile dimension. Without this precaution, the right side of 
the image might be cut off. Then, at x, loop through the rows and columns 
and fill them with tiles. Determine the location of the top-left corner of the 
tile by multiplying (j*w, i*h) so it aligns with the rows and columns. Once 
complete, the method returns an Image object of the specified dimensions, 
tiled with the input image tile.

Creating a Tile from Random Circles
If the user doesn’t provide a tile image, create a tile with random circles 
using the createRandomTile() method.

# create an image tile filled with random circles
def createRandomTile(dims):
    # create image

u     img = Image.new('RGB', dims)
v     draw = ImageDraw.Draw(img)

    # set the radius of a random circle to 1% of 
    # width or height, whichever is smaller

w     r = int(min(*dims)/100)
    # number of circles 

x     n = 1000
    # draw random circles
    for i in range(n):
        # -r makes sure that the circles stay inside and aren't cut off
        # at the edges of the image so that they'll look better when tiled

y         x, y = random.randint(0, dims[0]-r), random.randint(0, dims[1]-r)
z         fill = (random.randint(0, 255), random.randint(0, 255), 

                random.randint(0, 255))
{         draw.ellipse((x-r, y-r, x+r, y+r), fill)

    return img

At u, you create a new Image with the dimensions given by dim. Use 
ImageDraw.Draw() v to draw circles inside the image with an arbitrarily cho-
sen radius of 1/100th of either the width or the height of the image, which-
ever is smaller w. (The Python * operator unpacks the width and height 
values in the dims tuple so that it can be passed into the min() method.)

At x, set the number of circles to draw to 1000. Then calculate the 
x- and y-coordinates of each circle by calling random.randint() to get ran-
dom integers in the range [0, width-r] and [0, height-r] y. The -r makes 
sure the generated circles stay inside the image rectangle of dimensions 
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width × height. Without the -r, you could end up drawing a circle right at 
the edge of the image, which means it would be partly cut off. If you tiled 
such an image to create the autostereogram, the result wouldn’t look good 
because the circles at the edge between two tiles would have no spacing 
between them.

To create a random circle, first draw the outline and then fill in a color. 
At z, you select a color for the fill by randomly choosing RGB values from 
the range [0, 255]. Finally, at {, you use the ellipse() method in draw to 
draw each of your circles. The first argument to this method is the bound-
ing box of the circle, which is given by the top-left and bottom-right corners 
as (x-r, y-r) and (x+r, y+r), respectively, where (x, y) is the center of the 
circle and r is its radius.

Let’s test this method in the Python interpreter.

>>> import autos
>>> img = autos.createRandomTile((256, 256))
>>> img.save('out.png')
>>> exit()

Figure 8-5 shows the output from the test.

Figure 8-5: Sample run of createRandomTile()

As you can see in Figure 8-5, you have created a tile image with random 
dots. You’ll use this to create the autostereogram.

Creating Autostereograms
Now let’s create some autostereograms. The createAutostereogram() method 
does most of the work. Here it is:

def createAutostereogram(dmap, tile):
    # convert the depth map to a single channel if needed

u     if dmap.mode is not 'L':
        dmap = dmap.convert('L')
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    # if no image is specified for a tile, create a random circles tile
v     if not tile:

        tile = createRandomTile((100, 100))
    # create an image by tiling

w     img = createTiledImage(tile, dmap.size)
    # create a shifted image using depth map values

x     sImg = img.copy()
    # get access to image pixels by loading the Image object first

y     pixD = dmap.load()
    pixS = sImg.load()
    # shift pixels horizontally based on depth map

z     cols, rows = sImg.size
    for j in range(rows):
        for i in range(cols):

{             xshift = pixD[i, j]/10
|             xpos = i - tile.size[0] + xshift
}             if xpos > 0 and xpos < cols:
~                 pixS[i, j] = pixS[xpos, j]

    # display the shifted image
    return sImg

At u, you perform a sanity check to ensure that the depth map and 
the image have the same dimensions. If the user doesn’t supply an image 
for the tile, you create a random circle tile at v. At w, you create a tile that 
matches the size of the supplied depth map image. You then make a copy of 
this tiled image at x. 

At y, you use the Image.Load() method, which loads image data into 
memory. This method allows accessing image pixels as a two-dimensional 
array in the form [i, j]. At z, you store the image dimensions as a number 
of rows and columns, treating the image as a grid of individual pixels. 

The core of the autostereogram creation algorithm lies in the way you 
shift the pixels in the tiled image according to the information gathered 
from the depth map. To do this, iterate through the tiled image and pro-
cess each pixel. At {, you look up the value of the shift associated with a pixel 
from the depth map pixD. You then divide this depth value by 10 because you 
are using 8-bit depth maps here, which means the depth varies from 0 to 
255. If you divide these values by 10, you get depth values in the approxi-
mate range of 0 to 25. Since the depth map input image dimensions are 
usually in the hundreds of pixels, these shift values work fine. (Play around 
by changing the value you divide by to see how it affects the final image.) 

At |, you calculate the new x position of the pixel by filling the auto-
stereogram with the tiles. The value of a pixel keeps repeating every w pixels 
and is expressed by the formula ai = ai + w, where ai is the color of a given 
pixel at index i along the x-axis. (Because you’re considering rows, not col-
umns, of pixels, you ignore the y-direction.)

To create a perception of depth, make the spacing, or repeat interval, 
proportional to the depth map value for that pixel. So in the final auto-
stereogram image, every pixel is shifted by delta_i compared to the previous 
(periodic) appearance of the same pixel. You can express this as b bi i w t

= − +δ .
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Here, bi represents the color value of a given pixel at index i for the 
final autostereogram image. This is exactly what you are doing at |. Pixels 
with a depth map value of 0 (black) are not shifted and are perceived as the 
background.

At ~, you replace each pixel with its shifted value. At }, check to make 
sure you’re not trying to access a pixel that’s not in the image, which can 
happen at the image’s edges because of the shift.

Command Line Options
Now let’s look at main() method of the program, where we provide some 
command line options.

    # create a parser
    parser = argparse.ArgumentParser(description="Autosterograms...")
    # add expected arguments

u     parser.add_argument('--depth', dest='dmFile', required=True)
    parser.add_argument('--tile', dest='tileFile', required=False)
    parser.add_argument('--out', dest='outFile', required=False)
    # parse args
    args = parser.parse_args()
    # set the output file
    outFile = 'as.png'
    if args.outFile:
        outFile = args.outFile
    # set tile
    tileFile = False
    if args.tileFile:
        tileFile = Image.open(args.tileFile)

At u, as with previous projects, you define the command line options 
for the program using argparse. The one required argument is the depth 
map file, and the two optional arguments are the tile filename and the 
name of the output file. If a tile image is not specified, the program will 
generate a tile of random circles. If the output filename is not specified, 
the output is written to an autostereogram file named as.png.

the complete code
Here is the complete autostereogram program. You can also download this 
code from https://github.com/electronut/pp/blob/master/autos/autos.py.

import sys, random, argparse
from PIL import Image, ImageDraw

# create spacing/depth example
def createSpacingDepthExample():
    tiles = [Image.open('test/a.png'), Image.open('test/b.png'), 
             Image.open('test/c.png')]
    img = Image.new('RGB', (600, 400), (0, 0, 0))
    spacing = [10, 20, 40]

https://github.com/electronut/pp/blob/master/autos/autos.py
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    for j, tile in enumerate(tiles):
        for i in range(8):
            img.paste(tile, (10 + i*(100 + j*10), 10 + j*100))
    img.save('sdepth.png')

# create an image filled with random circles
def createRandomTile(dims):
    # create image
    img = Image.new('RGB', dims)
    draw = ImageDraw.Draw(img)
    # set the radius of a random circle to 1% of 
    # width or height, whichever is smaller 
    r = int(min(*dims)/100)
    # number of circles
    n = 1000
    # draw random circles
    for i in range(n):
        # -r makes sure that the circles stay inside and aren't cut off
        # at the edges of the image so that they'll look better when tiled
        x, y = random.randint(0, dims[0]-r), random.randint(0, dims[1]-r)
        fill = (random.randint(0, 255), random.randint(0, 255), 
                random.randint(0, 255))
        draw.ellipse((x-r, y-r, x+r, y+r), fill)
    # return image
    return img

# tile a graphics file to create an intermediate image of a set size
def createTiledImage(tile, dims):
    # create the new image
    img = Image.new('RGB', dims)
    W, H = dims
    w, h = tile.size
    # calculate the number of tiles needed
    cols = int(W/w) + 1
    rows = int(H/h) + 1
    # paste the tiles into the image
    for i in range(rows):
        for j in range(cols):
            img.paste(tile, (j*w, i*h))
    # output the image
    return img

# create a depth map for testing
def createDepthMap(dims):
    dmap = Image.new('L', dims)
    dmap.paste(10, (200, 25, 300, 125))
    dmap.paste(30, (200, 150, 300, 250))
    dmap.paste(20, (200, 275, 300, 375))
    return dmap

# given a depth map image and an input image, 
# create a new image with pixels shifted according to depth
def createDepthShiftedImage(dmap, img):
    # size check
    assert dmap.size == img.size
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    # create shifted image
    sImg = img.copy()
    # get pixel access
    pixD = dmap.load()
    pixS = sImg.load()
    # shift pixels output based on depth map
    cols, rows = sImg.size
    for j in range(rows):
        for i in range(cols):
            xshift = pixD[i, j]/10
            xpos = i - 140 + xshift
            if xpos > 0 and xpos < cols:
                pixS[i, j] = pixS[xpos, j]
    # return shifted image
    return sImg

# given a depth map (image) and an input image, 
# create a new image with pixels shifted according to depth
def createAutostereogram(dmap, tile):
    # convert the depth map to a single channel if needed
    if dmap.mode is not 'L':
        dmap = dmap.convert('L')
    # if no image is specified for a tile, create a random circles tile
    if not tile:
        tile = createRandomTile((100, 100))
    # create an image by tiling
    img = createTiledImage(tile, dmap.size)
    # create a shifted image using depth map values
    sImg = img.copy()
    # get access to image pixels by loading the Image object first
    pixD = dmap.load()
    pixS = sImg.load()
    # shift pixels horizontally based on depth map
    cols, rows = sImg.size
    for j in range(rows):
        for i in range(cols):
            xshift = pixD[i, j]/10
            xpos = i - tile.size[0] + xshift
            if xpos > 0 and xpos < cols:
                pixS[i, j] = pixS[xpos, j]
    # return shifted image
    return sImg

# main() function
def main():
    # use sys.argv if needed
    print('creating autostereogram...')
    # create parser
    parser = argparse.ArgumentParser(description="Autosterograms...")
    # add expected arguments
    parser.add_argument('--depth', dest='dmFile', required=True)
    parser.add_argument('--tile', dest='tileFile', required=False)
    parser.add_argument('--out', dest='outFile', required=False)
    # parse args
    args = parser.parse_args()
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    # set the output file
    outFile = 'as.png'
    if args.outFile:
        outFile = args.outFile
    # set tile
    tileFile = False
    if args.tileFile:
        tileFile = Image.open(args.tileFile)
    # open depth map
    dmImg = Image.open(args.dmFile)
    # create stereogram
    asImg = createAutostereogram(dmImg, tileFile)
    # write output
    asImg.save(outFile)

# call main
if __name__ == '__main__':
    main()

running the autostereogram generator
Now let’s run the program using a depth map of a stool (stool-depth.png). 

$ python3 autos.py --depth data/stool-depth.png 

Figure 8-6 shows the depth map image on the left and the generated 
auto stereogram on the right. Because you haven’t supplied a graphic for the 
tile, this autostereogram is created using random tiles.

Figure 8-6: Sample run of autos .py

Now let’s give a tile image as input. Use the stool-depth.png depth map as 
you did earlier, but this time, supply the image escher-tile.jpg3 for the tiles. 

$ python3 autos.py --depth data/stool-depth.png –tile data/escher-tile.jpg

3. http://calculus-geometry.hubpages.com/hub/Free-M-C-Escher-Tessellation-Background-Patterns 
-Tiling-Lizard-Background/

http://calculus-geometry.hubpages.com/hub/Free-M-C-Escher-Tessellation-Background-Patterns-Tiling-Lizard-Background
http://calculus-geometry.hubpages.com/hub/Free-M-C-Escher-Tessellation-Background-Patterns-Tiling-Lizard-Background
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Figure 8-7 shows the output.

Figure 8-7: Sample run of autos .py using tiles

summary
In this project, you learned how to create autostereograms. Given a depth 
map image, you can now create either a random dot autostereogram or one 
tiled with an image you supply. 

experiments!
Here are some ways to further explore autostereograms.

1. Write code to create an image similar to Figure 8-2 that demonstrates 
how changes in the linear spacing in an image can create illusions of 
depth. (Hint: use image tiles and the Image.paste() method.)

2. Add a command line option to the program to specify the scale to be 
applied to the depth map values. (Remember that the code divides 
the depth map value by 10.) How does changing the value affect the 
autostereogram?

3. Learn to create your own depth maps from three-dimensional 
 models using a tool like SketchUp (http://sketchup.com/) or access 
the many ready-made SketchUp models online. Use SketchUp’s Fog 
option to  create your depth maps. If you need help, check out this 
YouTube video: https://www.youtube.com/watch?v=fDzNJYi6Bok/.

http://sketchup.com/
https://www.youtube.com/watch?v=fDzNJYi6Bok/




Part IV
e n t e r  3 d

“In One Dimensions, did not a moving Point produce a Line with two terminal points? 
In two Dimensions, did not a moving Line produce a Square with four terminal points? 

In Three Dimensions, did not a moving Square produce—did not the eyes of mine behold it— 
that blessed being, a Cube, with eight terminal points?” 

―— Edwin A. Abbott, Flatland: A Romance of Many Dimensions 
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u n d e r s t a n d i n g  o P e n g l

In this project, you’ll create a simple 
 program that displays a texture-mapped 

square using OpenGL and GLFW. OpenGL 
adds a software interface to your graphics pro-

cessing unit (GPU), and GLFW is a windowing tool-
kit. You’ll also learn how to use the C-like OpenGL 
Shading Language (GLSL) to write shaders—code 
that executes in the GPU. Shaders bring immense flexibility to computa-
tions in OpenGL. I’ll show you how to use GLSL shaders to transform and 
color geometry as you create a rotating, textured polygon (as shown in 
Figure 9-1).

GPUs are optimized to perform the same operations on huge amounts 
of data repeatedly, in parallel, which makes them much faster than central 
processing units (CPUs) for this purpose. In addition to rendering com-
puter graphics, they’re also being used for general-purpose computing, and 
specialized languages now let you use your GPU hardware for this purpose. 
You’ll leverage the GPU, OpenGL, and shaders in this project.
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Figure 9-1: The final image for the project in this chapter: a rotating 
polygon with a star image. This square polygon boundary is clipped 
to a black circle using a shader.

Python is an excellent “glue” language. There are a vast number of 
Python bindings available for libraries written in other languages, such as 
C, that allow you to use these libraries in Python. In this chapter and in 
Chapters 10 and 11, you’ll use PyOpenGL, the Python binding to OpenGL, to 
create computer graphics.

OpenGL is a state machine, kind of like an electrical switch, with two 
states: ON and OFF. When you switch from one state to the other, the switch 
remains in that new state. However, OpenGL is more complex than a simple 
electrical switch; it’s more like a switchboard with numerous switches and 
dials. Once you change the state of a particular setting, it remains OFF unless 
you turn it ON. When you bind an OpenGL call to a particular object, sub-
sequent related OpenGL calls will be directed toward the bound object 
until it is unbound.

Here are some of the concepts introduced in this project:

•	 Using the GLFW windowing library for OpenGL

•	 Using GLSL to write vertex and fragment shaders

•	 Performing texture mapping

•	 Using 3D transformations

First, let’s take a look at how OpenGL works.

old-school opengl
In most computer graphics systems, drawing is done by sending vertices 
through a series of interconnected functional blocks that form a pipeline. 
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Recently, the OpenGL application programming interface (API) transi-
tioned from a fixed-function graphics pipeline to a programmable graphics 
pipeline. You’ll focus on modern OpenGL, but because you’ll find numer-
ous “old-school” OpenGL examples on the Web, I’ll give you a taste of what 
the API used to look like so you’ll have a better sense of what has changed. 

For example, the following simple old-school OpenGL program draws a 
yellow rectangle on the screen:

import sys
from OpenGL.GLUT import *
from OpenGL.GL import *

def display():
    glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
    glColor3f (1.0, 1.0, 0.0)
    glBegin(GL_QUADS)
    glVertex3f (-0.5, -0.5, 0.0)
    glVertex3f (0.5, -0.5, 0.0)
    glVertex3f (0.5, 0.5, 0.0)
    glVertex3f (-0.5, 0.5, 0.0)
    glEnd()
    glFlush();

glutInit(sys.argv)
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)
glutInitWindowSize(400, 400)
glutCreateWindow("oldgl")
glutDisplayFunc(display)
glutMainLoop()

Figure 9-2 shows the result.

 

Figure 9-2: Output from a simple old-school  
OpenGL program
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Using old-school OpenGL, you would specify individual vertices for 
the 3D primitive (a GL_QUAD, or rectangle, in this case), but then each ver-
tex needs to be sent to the GPU separately, which is inefficient. This old-
school model of programming doesn’t scale well and is really slow when your 
 geometry becomes complex. It also offers only limited control over how the 
vertices and pixels on the screen are transformed. (As you will see in this 
project, you can use the new programmable pipeline paradigm to over-
come these limitations.)

modern opengl: the 3d graphics Pipeline
To give you a sense of how modern OpenGL works at a high level, let’s make 
a triangle appear on the screen through a sequence of operations commonly 
known as the 3D graphics pipeline. Figure 9-3 shows a simplified representa-
tion of the OpenGL 3D graphics pipeline.

Vertex Shader Rasterization

Fragment Shader Frame Buffer

3D Geometry Definition
(VBOs, etc.)

Frame Buffer Operations
(depth test, blending, etc.)

Figure 9-3: The (simplified) OpenGL graphics pipeline

In the first step, you define the 3D geometry by defining the vertices of 
the triangle in 3D space and specifying the colors associated with each ver-
tex. Next, you transform these vertices: the first transformation places the 
vertices in 3D space, and the second projects the 3D coordinates onto 2D 
space. The color values for the corresponding vertices are also calculated in 
this step based on factors such as lighting, typically in code called the vertex 
shader.

Next, the geometry is rasterized (converted from geometric objects to 
pixels), and for each pixel, another block of code called the fragment shader 
is executed. Just as the vertex shader operates on 3D vertices, the fragment 
shader operates on the 2D pixels after rasterization.

Finally, the pixel passes through a series of frame buffer operations, 
where it undergoes depth buffer testing (checking whether one fragment 
obscures another), blending (mixing two fragments with transparency), 
and other operations that combine its current color with what is already 
on the frame buffer at that location. These changes end up on the final 
frame buffer, which is typically displayed on the screen.
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Geometric Primitives
Because OpenGL is a low-level graphics library, you can’t ask it directly to 
draw a cube or a sphere, though libraries built on top of it can do such tasks 
for you. OpenGL understands only low-level geometric primitives such as 
points, lines, and triangles. 

Modern OpenGL supports only the primitive types GL_POINTS, GL_LINES, 
GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN. 
Figure 9-4 shows how the vertices for the primitives are organized. Each 
vertex shown is a 3D coordinate such as (x, y, z).

V0

V1

GL_POINTS

GL_LINES GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

v0

v1

v2

v3 v0

v1

v2

v3v4 v0
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v5 v0

v1

v2

v3

v4
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v1

v2 v3

v4
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Figure 9-4: OpenGL primitives

To draw a sphere in OpenGL, first define the geometry of the sphere 
mathematically and compute its 3D vertices. Then, assemble the vertices 
into basic geometric primitives; for example, you could group each set of 
three vertices into a triangle. You can then render these vertices using 
OpenGL.

3D Transformations
You can’t learn computer graphics without learning about 3D transfor-
mations. Conceptually, these are quite simple to understand. You have an 
object—what can you do with it? You can move it, stretch (or squash) it, 
or rotate it. You can do other things to it too, but these three tasks are the 
operations or transformations most commonly performed on an object: 
translation, scale, and rotation. In addition to these commonly used 
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transformations, you’ll use a perspective projection to map the 3D objects 
onto the 2D plane of the screen. These transformations are all applied on 
the coordinates of the object you are trying to transform. 

While you’re probably familiar with 3D coordinates in the form (x, y, z), 
in 3D computer graphics you use coordinates in the form (x, y, z, w), called 
homogeneous coordinates. (These coordinates come from a branch of math-
ematics called projective geometry, which is beyond the scope of this book.) 

Homogenous coordinates allow you to express these common 3D trans-
formations as 4×4 matrices. But for purposes of these OpenGL projects, all 
you need to know is that the homogenous coordinate (x, y, z, w) is equiva-
lent to the 3D coordinate (x/w, y/w, z/w, 1.0). A 3D point (1.0, 2.0, 3.0) can 
be expressed in homogeneous coordinates as (1.0, 2.0, 3.0, 1.0).

Here is an example of a 3D transformation using a translation matrix. 
See how the matrix multiplication translates a point (x, y, z, 1.0) to  
(x + tx, y + ty, z +tz, 1.0).
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Two terms that you will encounter often in OpenGL are modelview 
and projection transformations. With the advent of customizable shaders in 
modern OpenGL, modelviews and projections are just generic transfor-
mations. Historically, in old-school versions of OpenGL, the modelview 
transformations were applied to your 3D model to position it in space, and 
the projection transformations were used to map the 3D coordinates onto  
a 2D surface for display, as you’ll see in a moment. Modelview transfor-
mations are user-defined transformations that let you position your 3D 
objects, and projection transformations are projective transformations 
that map 3D onto 2D. 

The two most commonly used 3D graphic projective transformations 
are orthographic and perspective, but here you’ll use only perspective projec-
tions, which are defined by a field of view (the extent to which the eye can 
see), a near plane (the plane closest to the eye), a far plane (the plane farthest 
from the eye), and an aspect ratio (the ratio of the width to the height of 
the near plane). Together, these parameters constitute a camera model for 
a projection that determines how the 3D figure will be mapped onto a 2D 
screen, as shown in Figure 9-5. The truncated pyramid shown in the figure 
is the view frustum. The eye is the 3D location where you place the camera. 
(For orthographic projection, the eye will be at infinity, and the pyramid 
will become a rectangular cuboid.)

Once the perspective projection is complete and before rasterization, 
the graphics primitives are clipped (or cut out) against the near and far 
planes, as shown in Figure 9-5. The near and far planes are chosen such 
that the 3D objects you want to appear onscreen lie inside the view frustum; 
otherwise, they will be clipped away. 
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Figure 9-5: Perspective projection camera model

Shaders
You’ve seen how shaders fit into the modern OpenGL programmable 
graphics pipeline. Now let’s look at a simple pair of vertex and fragment 
shaders to get a sense of how GLSL works. 

a Vertex Shader

Here is a simple vertex shader:

u #version 330 core

v in vec3 aVert;

w uniform mat4 uMVMatrix;
x uniform mat4 uPMatrix;

y out vec4 vCol;

void main() {
    // apply transformations

z     gl_Position = uPMatrix * uMVMatrix * vec4(aVert, 1.0);
    // set color

{     vCol = vec4(1.0, 0.0, 0.0, 1.0);
}

At u, you set the version of GLSL used in the shader to version 3.3. 
Then, you define an input named aVert of type vec3 (a 3D vector) for the 
vertex shader using the keyword in v. At w and x, you define two variables 
of type mat4 (4×4 matrices), which correspond to the modelview and projec-
tion matrices, respectively. The uniform prefix to these variables indicates 
that they do not change during execution of the vertex shader for a given 
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rendering call on a set of vertices. You use the out prefix at y to define the 
output of the vertex shader, which is a color variable of type vec4 (a 4D vec-
tor to store red, green, blue, and alpha channels).

Now you come to the main() function, where the vertex shader program 
starts. The value of gl_Position is computed at z by transforming the input 
aVert using the uniform matrices passed in. The GLSL variable gl_Position 
is used to store the transformed vertices. At {, you set the output color from 
the vertex shader to red with no transparency by using the value (1, 0, 0, 1). 
You’ll use this as input in the next shader in the pipeline.

a Fragment Shader

Now let’s look at a simple fragment shader:

u #version 330 core

v in vec4 vCol;

w out vec4 fragColor;

void main() {
    // use vertex color

x     fragColor = vCol;
}

After setting the version of GLSL used in the shader at u, you set vCol 
at v as the input to the fragment shader. This variable, vCol, was set as out-
put from the vertex shader. (Remember, the vertex shader executes for every 
vertex in the 3D scene, whereas the fragment shader executes for every pixel 
on the screen.)

During rasterization (which occurs between the vertex and fragment 
shaders), OpenGL converts the transformed vertices to pixels, and the color 
of the pixels lying between the vertices is calculated by interpolating the 
color values at the vertices. 

You set up an output color variable fragColor at w, and at x, the interpo-
lated color is set as the output. By default, and in most cases, the intended 
output of the fragment shader is the screen, and the color you set ends up 
there (unless it’s affected by operations such as depth testing that occur in 
the final stage of the graphics pipeline).

For the GPU to execute the shader code, it needs to be compiled and 
linked to instructions that the hardware understands. OpenGL provides 
ways to do this and reports detailed compiler and linker errors that will 
help you develop the shader code. 

The compilation process also generates a table of locations or indices 
for the variables declared in your shaders that you’ll use to connect variables 
in your Python code with those in the shader.
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Vertex Buffers
Vertex buffers are an important mechanism used by OpenGL shaders. 
Modern graphics hardware and OpenGL are designed to work with large 
amounts of 3D geometry. Consequently, several mechanisms are built into 
OpenGL to help transfer data from the program to the GPU. A typical setup 
to draw 3D geometry in a program will do the following:

1. Define arrays of coordinates, colors, and other attributes for each vertex 
of the 3D geometry.

2. Create a Vertex Array Object (VAO) and bind to it.

3. Create Vertex Buffer Objects (VBOs) for each attribute, defined on a 
per-vertex basis.

4. Bind to the VBO and set the buffer data using the predefined arrays.

5. Specify the data and location of vertex attributes to be used in the 
shader.

6. Enable the vertex attributes.

7. Render the data.

After you define the 3D geometry in terms of vertices, you create and 
bind to a vertex array object. VAOs are a convenient way to group geometry 
as multiple arrays of coordinates, colors, and so on. Then, for each attribute 
of each vertex, you create a vertex buffer object and set your 3D data into it. 
The VBO stores the vertex data in the GPU memory. Now, all that’s left is to 
connect the buffer data so you can access it from your shaders. You do this 
through calls that use the location of the variables employed in the shader. 

Texture Mapping
Next let’s look at texture mapping, an important computer graphics tech-
nique that you’ll use in this chapter. Texture mapping is a way to give a scene 
a realistic feel with the help of a 2D picture of a 3D object (like the backdrop 
in a play). A texture is usually read from an image file and is stretched to 
drape over a geometric region by mapping the 2D coordinates (in the range 
[0, 1]) onto the 3D coordinates of the polygons. For example, Figure 9-6 
shows an image draped onto one face of a cube. (I used GL_TRIANGLE_STRIP 
primitives to draw the cube faces, and the ordering of the vertices is indi-
cated by the lines on the face.)

In Figure 9-6, the (0, 0) corner of the texture is mapped to the bottom-
left vertex of the cube face. Similarly, you can see how the other corners of 
the texture are mapped, with the net effect that the texture is “pasted” onto 
this cube face. The geometry of the cube face itself is defined as a triangle 
strip, and the vertices zigzag from the bottom to the top left and from the 
bottom to the top right. Textures are extremely powerful and versatile com-
puter graphics tools, as you’ll see in Chapter 11. 
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Figure 9-6: Texture mapping

Displaying OpenGL 
Now let’s talk about how to get OpenGL to draw stuff on the screen. The 
entity that stores all the OpenGL state information is called the OpenGL con-
text. Contexts have a viewable, window-like area where the OpenGL drawings 
go, and you can have multiple contexts per process or run of an application, 
but only one context per thread can be current at a time. (Fortunately, the 
window toolkit will take care of most of the context handling.)

For your OpenGL output to appear in a window onscreen, you need 
the help of the operating system. For these projects, you’ll use GLFW, a light-
weight cross-platform C library that lets you create and manage OpenGL 
contexts, display the 3D graphics in a window, and handle user input like 
mouse clicks and keyboard presses. (Appendix A covers the installation 
details for this library.)

Because you’re writing code in Python and not C, you’ll also use a Python 
binding to GLFW (glfw.py, available in the common directory in the book’s 
code repository), which lets you access all the GLFW features using Python.

Requirements
We’ll use PyOpenGL, a popular Python binding for OpenGL, for rendering 
and numpy arrays to represent 3D coordinates and transformation matrices. 

The Code
Let’s build a simple Python application using OpenGL. To see the complete 
project code, skip ahead to “The Complete Code” on page 151.

Creating an OpenGL Window
The first order of business is to set up GLFW so you have an OpenGL win-
dow to render into. I’ve created a class called RenderWindow for this purpose. 
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Here is the initialization code for this class:

class RenderWindow:
    """GLFW Rendering window class"""
    def __init__(self):

        # save current working directory
        cwd = os.getcwd()

        # initialize glfw
u         glfw.glfwInit()

        # restore cwd
        os.chdir(cwd)

        # version hints
v         glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, 3)

        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_PROFILE, 
                            glfw.GLFW_OPENGL_CORE_PROFILE)

        # make a window
        self.width, self.height = 640, 480
        self.aspect = self.width/float(self.height)

w         self.win = glfw.glfwCreateWindow(self.width, self.height, 
                                         b'simpleglfw')

        # make the context current
x         glfw.glfwMakeContextCurrent(self.win)

You initialize the GLFW library at u. Then, starting at v, you set 
the OpenGL version to the OpenGL 3.3 core profile. At w, you create an 
OpenGL-capable window with the dimensions 640×480. Finally, at x, you 
make the context current, and you’re ready to make OpenGL calls. 

Next, you make some initialization calls.

        # initialize GL
u         glViewport(0, 0, self.width, self.height)
v         glEnable(GL_DEPTH_TEST)
w         glClearColor(0.5, 0.5, 0.5, 1.0)

At u, you set the viewport or screen dimensions (width and height) 
where OpenGL will render your 3D scene. At v, turn on depth testing with 
GL_DEPTH_TEST. At w, you set the color the background should become when 
glClear() is issued during rendering to 50 percent gray with an alpha setting 
of 1.0. (Alpha is a measure of the transparency of a pixel.)

Setting Callbacks
Next you register some event callbacks for user interface events within the 
GLFW window so you can respond to mouse clicks and keypresses.
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        # set window callbacks
        glfw.glfwSetMouseButtonCallback(self.win, self.onMouseButton)
        glfw.glfwSetKeyCallback(self.win, self.onKeyboard)
        glfw.glfwSetWindowSizeCallback(self.win, self.onSize) 

This code sets callbacks for mouse button presses, keyboard presses, 
and window resizing, respectively. Every time one of these events happens, 
the function registered as a callback is executed. 

the Keyboard Callback

Let’s look at the keyboard callback:

    def onKeyboard(self, win, key, scancode, action, mods):
        #print 'keyboard: ', win, key, scancode, action, mods

u         if action == glfw.GLFW_PRESS:
            # ESC to quit
            if key == glfw.GLFW_KEY_ESCAPE:

v                 self.exitNow = True
            else:
                # toggle cut

w                 self.scene.showCircle = not self.scene.showCircle 

The onKeyboard() callback is called every time a keyboard event happens. 
The arguments to the function arrive filled with useful information such 
as what type of event occurred (key-up versus key-down, for example) and 
which key was pressed. The code glfw.GLFW_PRESS says to look only for key-
down, or PRESS, events u. At v, you set an exit flag if the esc key is pressed. If 
any other key is pressed, you toggle a showCircle Boolean that will be passed 
into the fragment shader w.

the Window-resizing Event

Here is the handler for the window-resizing event:

    def onSize(self, win, width, height):
        #print 'onsize: ', win, width, height
        self.width = width
        self.height = height
        self.aspect = width/float(height)

u         glViewport(0, 0, self.width, self.height)

Every time the window size changes, you call glViewport() to reset the 
dimensions for the graphics to ensure that the 3D scene is drawn correctly 
on the screen u. You also store the dimensions in width and height and store 
the aspect ratio for the changed window in aspect.

the Main Loop

Now you come to the main loop of the program. (GLFW does not provide a 
default program loop.)
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    def run(self):
        # initializer timer

u         glfw.glfwSetTime(0)
        t = 0.0

v         while not glfw.glfwWindowShouldClose(self.win) and not self.exitNow:
            # update every x seconds

w             currT = glfw.glfwGetTime()
            if currT - t > 0.1:
                # update time
                t = currT
                # clear

x                 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

                # build projection matrix
y                 pMatrix = glutils.perspective(45.0, self.aspect, 0.1, 100.0)

z                 mvMatrix = glutils.lookAt([0.0, 0.0, -2.0], [0.0, 0.0, 0.0],
                                          [0.0, 1.0, 0.0])
                # render

{                 self.scene.render(pMatrix, mvMatrix)
                # step

|                 self.scene.step()

}                 glfw.glfwSwapBuffers(self.win)
                # poll for and process events

~                 glfw.glfwPollEvents()
        # end
        glfw.glfwTerminate()

In the main loop, glfw.glfwSetTime ()resets the GLFW timer to 0 u. You’ll 
use this timer to redraw the graphics at regular intervals. A while loop starts 
at v and exits only if the window is closed or exitNow is set to True. When the 
loop exits, glfw.glfwTerminate() is called to shut down GLFW cleanly. 

Inside the loop, glfw.glfwGetTime() gets the current timer value w, 
which you use to calculate the elapsed time since the last drawing. By set-
ting a desired interval here (in this case, to 0.1 seconds or 100 milliseconds), 
you can adjust the rendering frame rate. 

Next, at x, glClear() clears the depth and color buffers and replaces 
them with the set background color to get ready for the next frame. At y, 
you compute the projection matrix using the perspective() method defined 
in  glutils.py (you’ll take a closer look at this in the next section). Here, you 
ask for a 45-degree field of view and a near/far plane distance of 0.1/100.0. 
Then, you set the modelview matrix at z using the lookAt() method defined 
in glutils.py. Set the eye position at (0, 0, −2), looking at the origin (0, 0, 0) 
with an “up” vector of (0, 1, 0). Then, call the render() method on the scene 
object at {, passing in these matrices, and at |, call scene.step() so it can 
update the variables necessary for the time step. At }, glfwSwapBuffers() 
is called, which swaps the back and front buffers, thus displaying your 
updated 3D graphic. The GLFW PollEvents() call at ~ checks for any UI 
events and returns control to the while loop.
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The Scene Class
Now let’s look at the Scene class, which is responsible for initializing and 
drawing the 3D geometry.

class Scene:    
    """ OpenGL 3D scene class"""
    # initialization
    def __init__(self):
        # create shader

u         self.program = glutils.loadShaders(strVS, strFS)

v         glUseProgram(self.program)

In the Scene class constructor, you first compile and load the shaders. 
For this, I’ve used the utility method loadShaders() u defined in glutils.py, 
which provides a convenient wrapper around the series of OpenGL calls 
required to load the shaders from the string, compile them, and link them 
into an OpenGL program object. Because OpenGL is a state machine, you 
need to set the code to use a particular “program object” (because a project 
could have multiple programs) using the glUseProgram() call at v. 

Now connect the variables in the Python code with those in the 
shaders.

        self.pMatrixUniform = glGetUniformLocation(self.program, b'uPMatrix')
        self.mvMatrixUniform = glGetUniformLocation(self.program, b'uMVMatrix')
        # texture
        self.tex2D = glGetUniformLocation(self.program, b'tex2D')

This code uses the glGetUniformLocation() method to retrieve the locations 
of the variables uPMatrix, uMVMatrix, and tex2D defined inside the vertex and 
fragment shaders. These locations can then be used to set the values for 
the shader variables. 

douBl e Buf f e r ing 

Double buffering is a rendering technique for updating your onscreen graphics 
smoothly . The system maintains two buffers: a front buffer and a back buffer . The 
3D rendering is first rendered into the back buffer, and when that’s done, the 
contents of the front buffer are swapped with those in the back . Since the buf-
fer update happens quickly, this technique produces a smoother visual effect, 
especially during animation . The double buffering (like other features linked to 
the OS) is provided by the windowing toolkit (GLFW, in this case) .
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Defining the 3D Geometry

Let’s first define the 3D geometry for the square.

        # define triangle strip vertices
u         vertexData = numpy.array(

            [-0.5, -0.5, 0.0, 
             0.5, -0.5, 0.0, 
             -0.5, 0.5, 0.0,
             0.5, 0.5, 0.0], numpy.float32)

        # set up vertex array object (VAO)
v         self.vao = glGenVertexArrays(1)

        glBindVertexArray(self.vao)
        # vertices

w         self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        # set buffer data

x         glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)
        # enable vertex array

y         glEnableVertexAttribArray(0)
        # set buffer data pointer

z         glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, None)
        # unbind VAO

{         glBindVertexArray(0)

At u, you define the array of vertices of the triangle strip used to 
draw the square. Think of a square of side 1.0 centered at the origin. The 
bottom-left vertex of this square has the coordinates (–0.5, –0.5, 0.0); the 
next vertex (the bottom-right one) has the coordinates (0.5, –0.5, 0.0); and 
so on. The order of the coordinates is that of a GL_TRIANGLE_STRIP. At v, you 
create a VAO. Once you bind to this VAO, all upcoming calls will be bound 
to it. At w, you create a VBO to manage the rendering of the vertex data. 
Once the buffer is bound, the line at x sets the buffer data from the ver-
tices you have defined. 

Now you need to enable the shaders to access this data, and you do this 
at y; glEnableVertexAttribArray() is called with an index of 0 because that is 
the location you have set in the vertex shader for the vertex data variable. 
At z, glVertexAttribPointer() sets the location and data format of the ver-
tex attribute array. The index of the attribute is 0, the number of compo-
nents is 3 (you use 3D vertices), and the data type of the vertex is GL_FLOAT. 
You unbind the VAO at { so other related calls don’t interfere with it. In 
OpenGL, it’s best practice to reset states when you are done. OpenGL is a 
state machine, so if you leave things in a mess, they will remain that way.

The following code loads the image as an OpenGL texture:

        # texture
        self.texId = glutils.loadTexture('star.png')

The texture ID returned will be used later in rendering.
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Next we’ll update variables in the Scene object to make the square rotate 
on the screen:

    # step
    def step(self):
        # increment angle

u         self.t = (self.t + 1) % 360
        # set shader angle in radians

v         glUniform1f(glGetUniformLocation(self.program, 'uTheta'),
                    math.radians(self.t)) 

At u, you increment the angle variable t and use the modulus opera- 
tor (%) to keep this value within [0, 360]. You then use the glUniform1f() 
method at v to set this value in the shader program. As before, you use 
glGetUniformLocation() to get the location of the uTheta angle variable from 
the shader, and the Python math.radians() method to convert the angle from 
degrees to radians. 

Now let’s look at the main rendering code:

    # render
    def render(self, pMatrix, mvMatrix):
        # use shader

u         glUseProgram(self.program)

        # set projection matrix
v         glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix)

        # show circle?
w         glUniform1i(glGetUniformLocation(self.program, b'showCircle'),

                    self.showCircle)

        # enable texture
x         glActiveTexture(GL_TEXTURE0)
y         glBindTexture(GL_TEXTURE_2D, self.texId)
z         glUniform1i(self.tex2D, 0)

        # bind VAO
{         glBindVertexArray(self.vao)

        # draw
|         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)

        # unbind VAO
}         glBindVertexArray(0)

At u, set up the rendering to use the shader program. Then, starting 
at v, set the computed projection and modelview matrices in the shader 
using the glUniformMatrix4fv() method. You use glUniform1i() at w to set 
the current value of the showCircle variable in the fragment shader. OpenGL 
has a concept of multiple texture units, and glActiveTexture() x activates 
texture unit 0 (the default). At y, you bind the texture ID you generated 
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earlier to activate it for rendering. The sampler2D variable in the fragment 
shader is set to texture unit 0 at z. At {, you bind to the VAO you created 
previously. Now you see the benefit of using VAOs: you don’t need to repeat 
a whole bunch of vertex buffer–related calls before the actual drawing. 
At |, glDrawArrays() is called to render the bound vertex buffers. The primi-
tive type is a triangle strip, and there are four vertices to be rendered. You 
unbind the VAO at }, which is always a good coding practice.

Defining the GLSL Shaders
Now let’s look at the most exciting part of the project—the GLSL shaders. 
This is the vertex shader:

#version 330 core

u layout(location = 0) in vec3 aVert;

v uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform float uTheta;

w out vec2 vTexCoord;

void main() {
    // rotational transform

x     mat4 rot = mat4(
                vec4(cos(uTheta), sin(uTheta), 0.0, 0.0),
                vec4(-sin(uTheta), cos(uTheta), 0.0, 0.0),
                vec4(0.0, 0.0, 1.0, 0.0),
                vec4(0.0, 0.0, 0.0, 1.0)
                );
    // transform vertex

y     gl_Position = uPMatrix * uMVMatrix * rot * vec4(aVert, 1.0);
    // set texture coordinate

z     vTexCoord = aVert.xy + vec2(0.5, 0.5);
}

At u, you use the layout keyword to set explicitly the location of the 
vertex attribute aVert—to 0, in this case. Starting at v, declare uniform vari-
ables: projection and modelview matrices and the rotation angle. These 
will be set from the Python code. At w, you set a 2D vector vTexCoord as an 
output from this shader. This will be available as an input to the fragment 
shader. In the main() method in the shader, set up a rotation matrix at x, 
which rotates around the z-axis by a given angle. You compute gl_Position 
at y using a concatenation of projection, modelview, and rotation matrices. 
At z, you set up a 2D vector as a texture coordinate. You may recall that you 
defined the triangle strip for a square centered at the origin with side 1.0. 
Because texture coordinates are in the range [0, 1], you can generate these 
from the vertex coordinates by adding (0.5, 0.5) to the x- and y-values. This 
also demonstrates the power and immense flexibility of shaders for your 
computations. Texture coordinates and other variables are not sacrosanct; 
you can set them to just about anything. 
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Now let’s look at the fragment shader:

#version 330 core

u in vec4 vCol;
in vec2 vTexCoord;

v uniform sampler2D tex2D;
w uniform bool showCircle;

x out vec4 fragColor;

void main() {
    if (showCircle) {
        // discard fragment outside circle

y         if (distance(vTexCoord, vec2(0.5, 0.5)) > 0.5) {
            discard;
        }
        else {

z             fragColor = texture(tex2D, vTexCoord);
        }
    }
        else {

{             fragColor = texture(tex2D, vTexCoord);
        }
}

Starting at u, you define inputs to the fragment shader—the same 
color and texture coordinate variables you set as output in the vertex 
shader. Recall that the fragment shader operates on a per-pixel basis, so 
the values set for these variables are those for the current pixel, interpo-
lated across the polygon. You declare a sampler2D variable at v, which is 
linked to a particular texture unit and is used to look up the texture value. 
At w, declare a Boolean uniform flag showCircle, which is set from the 
Python code, and at x, declare fragColor as the output from the fragment 
shader. By default, this goes to the screen (after final frame buffer opera-
tions such as depth testing and blending). 

If the showCircle flag is not set, at {, you use the GLSL texture() 
method to look up the texture color value using the texture coordinate 
and the sampler. In effect, you are just texturing the triangle strip using 
the star image. But if the showCircle flag is true, at y, use the GLSL built-in 
method distance to check how far the current pixel is from the center of 
the polygon. It uses the (interpolated) texture coordinates for this pur-
pose, which are passed in by the vertex shader. If the distance is greater 
than a certain threshold (0.5 in this case), it calls the GLSL discard 
method, which drops the current pixel. If the distance is less than the 
threshold, you set the appropriate color from the texture z. Basically, 
what this does is ignore pixels that are outside a circle with a radius of 0.5 
centered at the midpoint of the square, thus cutting the polygon into a 
circle when showCircle is set.
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the complete code
The complete code for our simple OpenGL application resides in two files: 
simpleglfw.py, which has the code shown here and can be found at https://
github.com/electronut/pp/tree/master/simplegl/, and glutils.py, which includes 
some helper methods to make life easier and can be found in the common 
directory. 

import OpenGL
from OpenGL.GL import *

import numpy, math, sys, os
import glutils

import glfw

strVS = """
#version 330 core

layout(location = 0) in vec3 aVert;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform float uTheta;

out vec2 vTexCoord;

void main() {
    // rotational transform
    mat4 rot =  mat4(
                 vec4(cos(uTheta), sin(uTheta), 0.0, 0.0),
                 vec4(-sin(uTheta), cos(uTheta), 0.0, 0.0),
                 vec4(0.0, 0.0, 1.0, 0.0),
                 vec4(0.0, 0.0, 0.0, 1.0)
                 );
    // transform vertex
    gl_Position = uPMatrix * uMVMatrix * rot * vec4(aVert, 1.0); 
    // set texture coordinate
    vTexCoord = aVert.xy + vec2(0.5, 0.5);
}
"""
strFS = """
#version 330 core

in vec2 vTexCoord;

uniform sampler2D tex2D;
uniform bool showCircle;

out vec4 fragColor;

void main() {
    if (showCircle) {

https://github.com/electronut/pp/tree/master/simplegl
https://github.com/electronut/pp/tree/master/simplegl
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        // discard fragment outside circle
        if (distance(vTexCoord, vec2(0.5, 0.5)) > 0.5) {
            discard;
        }
        else {
            fragColor = texture(tex2D, vTexCoord);
        }
    }
    else {
         fragColor = texture(tex2D, vTexCoord);
    }
}
"""

class Scene:    
    """ OpenGL 3D scene class"""
    # initialization
    def __init__(self):
        # create shader
        self.program = glutils.loadShaders(strVS, strFS)

        glUseProgram(self.program)

        self.pMatrixUniform = glGetUniformLocation(self.program, b'uPMatrix')
        self.mvMatrixUniform = glGetUniformLocation(self.program, b'uMVMatrix')
        # texture 
        self.tex2D = glGetUniformLocation(self.program, b'tex2D')

        # define triange strip vertices 
        vertexData = numpy.array(
            [-0.5, -0.5, 0.0, 
             0.5, -0.5, 0.0, 
             -0.5, 0.5, 0.0,
             0.5, 0.5, 0.0], numpy.float32)

        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)
        # vertices
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        # set buffer data 
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)
        # enable vertex array
        glEnableVertexAttribArray(0)
        # set buffer data pointer
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, None)
        # unbind VAO
        glBindVertexArray(0)

        # time
        self.t = 0 
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        # texture
        self.texId = glutils.loadTexture('star.png')

        # show circle?
        self.showCircle = False
        
    # step
    def step(self):
        # increment angle
        self.t = (self.t + 1) % 360
        # set shader angle in radians
        glUniform1f(glGetUniformLocation(self.program, 'uTheta'), 
                    math.radians(self.t))

    # render 
    def render(self, pMatrix, mvMatrix):        
        # use shader
        glUseProgram(self.program)
        
        # set projection matrix
        glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix)

        # show circle?
        glUniform1i(glGetUniformLocation(self.program, b'showCircle'), 
                    self.showCircle)

        # enable texture 
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_2D, self.texId)
        glUniform1i(self.tex2D, 0)

        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)
        # unbind VAO
        glBindVertexArray(0)

class RenderWindow:
    """GLFW Rendering window class"""
    def __init__(self):

        # save current working directory
        cwd = os.getcwd()

        # initialize glfw - this changes cwd
        glfw.glfwInit()
        
        # restore cwd
        os.chdir(cwd)
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        # version hints
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_PROFILE, 
                            glfw.GLFW_OPENGL_CORE_PROFILE)
    
        # make a window
        self.width, self.height = 640, 480
        self.aspect = self.width/float(self.height)
        self.win = glfw.glfwCreateWindow(self.width, self.height, 
                                         b'simpleglfw')
        # make context current
        glfw.glfwMakeContextCurrent(self.win)
        
        # initialize GL
        glViewport(0, 0, self.width, self.height)
        glEnable(GL_DEPTH_TEST)
        glClearColor(0.5, 0.5, 0.5, 1.0)

        # set window callbacks
        glfw.glfwSetMouseButtonCallback(self.win, self.onMouseButton)
        glfw.glfwSetKeyCallback(self.win, self.onKeyboard)
        glfw.glfwSetWindowSizeCallback(self.win, self.onSize)        

        # create 3D
        self.scene = Scene()

        # exit flag
        self.exitNow = False

        
    def onMouseButton(self, win, button, action, mods):
        #print 'mouse button: ', win, button, action, mods
        pass

    def onKeyboard(self, win, key, scancode, action, mods):
        #print 'keyboard: ', win, key, scancode, action, mods
        if action == glfw.GLFW_PRESS:
            # ESC to quit
            if key == glfw.GLFW_KEY_ESCAPE: 
                self.exitNow = True
            else:
                # toggle cut
                self.scene.showCircle = not self.scene.showCircle 
        
    def onSize(self, win, width, height):
        #print 'onsize: ', win, width, height
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        glViewport(0, 0, self.width, self.height)
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    def run(self):
        # initializer timer
        glfw.glfwSetTime(0)
        t = 0.0
        while not glfw.glfwWindowShouldClose(self.win) and not self.exitNow:
            # update every x seconds
            currT = glfw.glfwGetTime()
            if currT - t > 0.1:
                # update time
                t = currT
                # clear
                glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
                
                # build projection matrix
                pMatrix = glutils.perspective(45.0, self.aspect, 0.1, 100.0)
                
                mvMatrix = glutils.lookAt([0.0, 0.0, -2.0], [0.0, 0.0, 0.0],
                                          [0.0, 1.0, 0.0])
                # render
                self.scene.render(pMatrix, mvMatrix)
                # step 
                self.scene.step()

                glfw.glfwSwapBuffers(self.win)
                # poll for and process events
                glfw.glfwPollEvents()
        # end
        glfw.glfwTerminate()

    def step(self):
        # clear
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
        
        # build projection matrix
        pMatrix = glutils.perspective(45.0, self.aspect, 0.1, 100.0)
                
        mvMatrix = glutils.lookAt([0.0, 0.0, -2.0], [0.0, 0.0, 0.0],
                                  [0.0, 1.0, 0.0])
        # render
        self.scene.render(pMatrix, mvMatrix)
        # step 
        self.scene.step()

        glfw.SwapBuffers(self.win)
        # poll for and process events
        glfw.PollEvents()

# main() function
def main():
    print("Starting simpleglfw. "
          "Press any key to toggle cut. Press ESC to quit.")
    rw = RenderWindow()
    rw.run()
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# call main
if __name__ == '__main__':
    main()

running the opengl application
Here is a sample run of the project:

$python simpleglfw.py 

The output will be the same as shown in Figure 9-1.
Now let’s take a quick look at some of the utility methods defined in 

glutils.py. This one loads an image into an OpenGL texture:

def loadTexture(filename):
    """load OpenGL 2D texture from given image file"""

u     img = Image.open(filename)
v     imgData = numpy.array(list(img.getdata()), np.int8)
w     texture = glGenTextures(1)
x     glBindTexture(GL_TEXTURE_2D, texture)
y     glPixelStorei(GL_UNPACK_ALIGNMENT, 1)
z     glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)

    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)
{     glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)

    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
|     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img.size[0], img.size[1],

                 0, GL_RGBA, GL_UNSIGNED_BYTE, imgData)
    return texture

The loadTexture() function uses the Python Imaging Library (PIL) Image 
module at u to read the image file. Then it gets the data out of the Image 
object onto an 8-bit numpy array at v. It creates an OpenGL texture object 
at w, which is a prerequisite to doing anything with textures in OpenGL. 
At x, you perform the now familiar binding to the texture object so all fur-
ther texture-related settings apply to this object. At y, you set the unpack-
ing alignment of data to 1, which means the image data will be considered 
to be 1-byte or 8-bit data by the hardware. Starting at z, you tell OpenGL 
what to do with the texture at the edges. In this case, it says to just clamp 
the texture color to the edge of the geometry. (In specifying texture coor-
dinates, the convention is to use the letters S and T for the axes instead of 
x and y.) At { and the following line, you specify the kind of interpolation 
to be used when the texture is stretched or compressed to map onto a poly-
gon. In this case, linear filtering is specified. At |, you set the image data in 
the bound texture. At this point, the image data is transferred to graphics 
memory, and the texture is ready for use.
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summary
Congratulations on completing your first program using Python and 
OpenGL. You have begun your journey into the fascinating world of 3D 
graphics programming. 

experiments!
Here are some ideas for modifying this project.

1. The vertex shader in this project rotates the square around the z-axis 
(0, 0, 1). Can you make it rotate around the axis (1, 1, 0)? You can do 
this in two ways: first, by modifying the rotation matrix in the shader, 
and second, by computing this matrix in the Python code and passing 
it as a uniform into the shader. Try both!

2. In the project, the texture coordinates are generated inside the vertex 
shader and passed to the fragment shader. This is a trick, and it works 
only because of the convenient values chosen for the vertices of the tri-
angle strip. Pass the texture coordinates as a separate attribute into the 
vertex shader, similar to how the vertices are passed in. Now, can you 
make the star texture tile across the triangle strip? Instead of displaying a 
single star, you want to produce a 4×4 grid of stars on the square. (Hint: 
use texture coordinates greater than 1.0 and set GL_TEXTURE_WRAP_S/T 
parameters in glTexParameterf() to GL_REPEAT.)

3. By changing just your fragment shader, can you make your square look 
like Figure 9-7? (Hint: use the GLSL sin() function.)

Figure 9-7: Using the fragment shader to block out  
concentric circles





10
P a r t i C l e  s y s t e m s

In the world of computer graphics, a particle 
system is a technique that uses many small 

graphical primitives (such as lines, points, 
triangles, and polygons) to represent objects 

such as smoke, fire, or even hair, which don’t have 
clear geometric shapes and hence are difficult to 
model using standard techniques. 

For example, how would you create an explosion on your computer 
(without using lighter fluid, that is)? Imagine the explosion originating 
from a point in space and growing outward as a rapidly expanding, com-
plex, three-dimensional entity that changes shape and color over time. 
Trying to model this mathematically is daunting to say the least. 

But now think of the explosion as consisting of a bunch of tiny particles, 
each with an associated position and color. At the start of the explosion, the 
particles are bunched up at a single point in space. As time passes, they move 
outward and change color according to certain mathematical rules, allow-
ing you to create an animation of the explosion by drawing all particles at 
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regular intervals. By using a good mathematical model, a large number of 
particles, and rendering techniques such as transparency and billboarding, 
you can create realistic-looking effects, as shown in Figure 10-1.  

Figure 10-1: Sample run of the completed project

In this project, you’ll formulate a mathematical model for the motion 
of particles as a function of time and use shaders on the graphics processing 
unit (GPU) for computation. Then, you’ll devise a rendering scheme to draw 
these particles in a convincing way using a technique called billboarding, 
which makes a two-dimensional image look three-dimensional by keep-
ing it constantly facing the viewer. You’ll also use OpenGL shaders to make 
the particles spin and to animate the scene. You’ll be able to turn the various 
effects on or off for comparison by using keypresses.

The mathematical model will set the initial position and velocity of 
each particle and determine how the particles move over time. You’ll create 
sparks from square images by making the black region of each texture trans-
parent, and you’ll keep each spark facing the viewer to make them look 
three-dimensional. You’ll animate the particles so that their positions are 
updated at regular intervals and their brightness fades over time. 

Here are some of the concepts you will explore:

•	 Developing a mathematical model for a fountain particle system

•	 Using GPU shaders for computation
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•	 Using textures and billboarding to imitate complex 3D objects

•	 Using OpenGL rendering features such as blending, depth masks, and 
alpha channels to draw semitransparent objects

•	 Using a camera model to draw 3D perspective views

how It works
To create the animation, you need a mathematical model. You’ll form a 
fountain of sparks by moving a number of particles originating from a fixed 
point through a parabolic trajectory over time, as shown in Figure 10-2. 
This is the fountain particle system.

Z

Figure 10-2: The trajectory of five example sparks in the  
fountain particle system 

Your particle system should have these features:

•	 The particles should emerge from a fixed point, and their motion 
should follow the shape of a parabola.

•	 The particles should be able to travel a predefined distance with 
respect to the vertical axis (z-axis or height) of the fountain. 

•	 Particles closer to the center of the fountain’s vertical axis should have 
larger initial velocities than those farther from the center.

•	 To produce a more realistic effect, the particles should not all be 
ejected at the same time.

•	 The brightness of the particles should fade over their lifetime.
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Modeling the Motion of a Particle
Let’s assume that the particle system consists of N particles. The equation 
for motion of the ith particle is as follows:

P P V t att
i i= + +0 0

21
2

Here, Pt is the position at any given time, t. P0 is the initial position of 
the particle, V0 is the initial velocity of the particle, and a is the acceleration. 
Think of a as the force of gravity in your system, making the particles arc 
downward. 

These parameters are all three-dimensional vectors that can be 
expressed as three-dimensional coordinates. For instance, the value of 
acceleration you’ll use is (0, 0, –9.8), which is the acceleration of Earth’s 
gravity in the z direction (height) in meters per second squared. 

Setting a Maximum Spread
To make the fountain look realistic, the particles should fly out at differ-
ent angles with respect to the z-axis of the cone. But you also want to set a 
maximum spread so the initial velocity of each particle is within a certain 
range, funneling the particles into a fountain shape. To accomplish that, 
you’ll fix the maximum angle of velocity at 20 degrees with respect to the 
vertical axis, as shown in Figure 10-3.
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Figure 10-3: Limiting the range of each particle’s initial velocity.  
Each particle is assigned a velocity within the shaded circle.
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In Figure 10-3, the azimuth, φ, is the angle of the velocity vector to 
the x-axis. The inclination, q, is the angle made by the velocity vector to the 
z-axis. The range of inclination chosen is such that the velocity vector lies 
within the light gray shaded area in the figure.

The velocity directions should be chosen at random from the part of 
the hemisphere enclosed within the large circle. These directions intersect 
points on a sphere with a radius of one unit, so you can use the spherical 
coordinate system to compute them. In addition, you want the magnitude 
of the velocity to decrease as the angle from the axis increases. Keeping 
this in mind, the initial velocity of a particle is as follows:

V Vi
0

21= −( )α

Here, a is the ratio of the angle of inclination of the particle to the maxi-
mum angle (in this case, 20 degrees). As a result, the velocity decreases 
(quad ratically) as this ratio moves toward 1.0. The velocity, V, is a point on 
the unit sphere and is as follows:

V = ( ) ( ) ( ) ( ) ( )( )si , sin sin ,cosθ φ θ φ φcos n

You choose a random inclination in the range of [0, 20] degrees and a 
random azimuth in the range of [0, 360] degrees:

θ φ= [ ]( ) = [ ]( )random random0 20 0 360, , ,

This equation points the particle at a random spot in the region within 
the circle in Figure 10-3. (Note that in this program, all angle calculations 
need to be done in radians, not degrees.)

You also want to ensure the particles don’t all start at the same time. 
(See “Experiments!” on page 189 to find out why.) To do this, you com-
pute a time lag for each particle, which you use later in the computation of 
the particle’s position. The lag for the ith particle is computed as follows:

t ilag
i = 0 05.

What about the arbitrary numerical constants in these equations? 
Why use 0.05 for the lag time, for example, or 20 degrees for the maxi-
mum angle? The answer is experimentation. The important thing is to 
make a basic model and then tweak these constants to get the best visual 
effect. Change these parameters in your program to see how different 
 values influence the results.

Rendering the Particles
One simple way to render the particles is to draw them as points. OpenGL 
has a GL_POINTS primitive that is essentially a dot on the screen; you can con-
trol the pixel size and color of the dot. But you want the particles to look like 
little sparks and to spin around as they shoot up. 
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Drawing sparks from scratch is too complicated, so you’ll take a picture 
of a spark and paste it as a texture onto a rectangle (also called a quad). Each 
particle in the fountain will be drawn as a textured triangular image of 
a spark. But that leaves you with two problems. First, you don’t want square 
sparks because that would look fake. Second, the quads will be aligned 
incorrectly if you look at the fountain from other angles.

Using OpenGL Blending to Create More Realistic Sparks
To create more realistic-looking sparks, you’ll use OpenGL blending. You 
combine the incoming fragment (after execution of the fragment shader) 
with the content already in the frame buffer. The alpha channel is usually 
involved in this operation. 

For example, say you’re drawing two polygons onscreen and you want 
to blend them together. You can use alpha blending to do the trick, which 
works like placing two transparent sheets on top of each other. The alpha 
channel represents the opacity of the pixel, which is a measure of how trans-
parent it is. In addition to the red, green, and blue components that represent 
the color of a pixel, you can also store an alpha value, and the resulting color 
scheme is called RGBA. For a 32-bit RGBA color scheme, the alpha value is 
in the range [0, 255], with 0 being fully transparent and 255 fully opaque. 
The alpha channel by itself doesn’t do anything. Only when you use the 
alpha value to change the final RGB value of a pixel are various transpar-
ency effects created.

OpenGL gives you several ways to tailor your blending equations. For 
your fountain particles, you’ll use the texture shown in Figure 10-4, but you 
want the black regions of the texture to disappear so you see just the sparks.

RGB = (0, 0, 0) 

RGB = (255, 255, 255)  

Figure 10-4: The spark texture, labeled with RGB values:  
(0, 0, 0) for black and (255, 255, 255) for white

You can make the black regions disappear by enabling OpenGL blend-
ing and multiplying the alpha value of a fragment by the texture color. For 
the black regions, the RGB color value is (0, 0, 0), and if you multiply this 
by an alpha value, you get 0. As a result, during blending, the opacity of 
the black regions in the final image is set to 0 and you see only the back-
ground color, effectively cutting off the black regions in the spark texture. 
(The alpha value is set in the fragment shader, as you’ll see in “Creating the 
Fragment Shader” on page 171.)
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n o t e   Instead of setting the alpha value in the shader, you could control the transparency by 
using the alpha channel in the texture image and setting different alpha values for 
the black-and-white regions. It’s much simpler to use the alpha value in the shader to 
create a texture with a black background and then make all black regions transpar-
ent than it is to apply different transparency values to specific regions using the alpha 
channel in the texture.

Using Billboarding
For the second problem (quads being incorrectly aligned when you look at 
the fountain from other angles), you’ll use billboarding. Instead of draw-
ing a complex three-dimensional object, you’ll position a two-dimensional 
picture such that you always view it head-on (perpendicular to the view 
direction) as a kind of billboard. For example, if you were developing a 
three-dimensional game with a landscape of trees in the background, you 
could replace the landscape with a textured polygon billboard. As long as the 
player doesn’t get too close, the fake “picture tree” looks realistic. 

Now let’s look at the math behind positioning a polygon so it always 
faces the view direction. Figure 10-5 shows how you can turn a textured 
quad into a billboard.

u

n(−v) 

u × n

(Approximate up vector)

Anchor point

(Polygon normal/
inverse view direction)

u'
(Real up vector)

Figure 10-5: Billboarding

The alignment happens with respect to an anchor point on the quad. 
In this case, you’ve chosen the center of the quad. To align the quad, you 
need a set of three orthogonal vectors to create a minicoordinate system. 
The first vector of interest is n, which represents the normal vector of the 
quad. The normal vector extends perpendicular to the plane of the quad, 
which means the direction you set for the normal vector is the direction the 
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quad will be facing. You want the quad to face the view direction, v, so the 
n vector needs to align itself with this vector but in the opposite direction. 
Because the view direction faces into the screen, the normal vector of the 
quad should point in the opposite direction—out of the screen. 

This means you want direction n = –v. Now, choose a vector u, which is 
an approximate up vector for the final orientation of the quad. You choose 
u as (0, 0, 1) because the z-direction points “up.” (I say this vector is approx-
imate because although you know the normal vector of the quad ahead of 
time, you don’t know the camera orientation yet.) Then you calculate the 
third vector, r, where r = u × n (the cross product of the two vectors). Now 
you have two orthogonal vectors, n and r, both in the plane of the quad. You 
get the third one by taking the cross product of these two. Thus, you have a 
new up vector of u′ = n × r = n × (u × n). You need a new up vector to ensure 
these three vectors are orthogonal, or perpendicular to each other. Finally, 
these vectors all need to be normalized to a length equal to one unit during 
calculation to create an orthonormal coordinate system (where all vectors 
are unit length and orthogonal). Once you have these three vectors, you 
can use a rotation matrix for an arbitrary orientation from 3D graphics 
theory. The rotation matrix R rotates the orthonormal coordinate system 
positioned at the origin onto the coordinate system formed by the vectors 
r, u′, and n: 

R

r u n

r u n

r u n

x x x

y y y

z z z
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′
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0 0 0 1

Applying this rotation matrix aligns your textured quad correctly 
toward the view direction, making it a billboard. 

Animating the Sparks
To animate the fountain of sparks, draw the positions of the particle sys-
tem at regular time intervals by updating both the rendering and the time, 
using the GLFW library. 

requirements
We’ll use PyOpenGL, a popular Python binding for OpenGL, for rendering 
and numpy arrays to represent 3D coordinates and transformation matrices. 

the code for the Particle system
Let’s begin by defining the 3D geometry of the particles used in the foun-
tain. You’ll then look at how to create a time lag between particles in 
the animation, how to set initial velocities for the particles, and how the 
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OpenGL vertex and fragment shaders are used in the program. Lastly, 
you’ll look at how to put all of this together to render the particle system. 
For the full project code, skip ahead to “The Complete Particle System Code” 
on page 174.

The code for the fountain is encapsulated in a class called ParticleSystem, 
which creates the particle system, sets up the OpenGL shaders, renders the 
system using OpenGL, and restarts the animation every five seconds.

Defining the Particle Geometry
First, define the geometry of the particles by creating a Vertex Array Object 
(VAO) to manage the subsequent vertex attribute arrays.

        # create Vertex Array Object (VAO)
        self.vao = glGenVertexArrays(1)
        # bind VAO
        glBindVertexArray(self.vao) 

Each particle is a square, whose vertices and texture coordinates are 
defined as follows:

        # vertices
        s = 0.2

u         quadV = [
            -s, s, 0.0,
            -s, -s, 0.0,
            s, s, 0.0,
            s, -s, 0.0,
            s, s, 0.0,
            -s, -s, 0.0
            ]

v         vertexData = numpy.array(numP*quadV, numpy.float32)
w         self.vertexBuffer = glGenBuffers(1)
x         glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
y         glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 

                     GL_STATIC_DRAW)

        # texture coordinates
z         quadT = [

            0.0, 1.0,
            0.0, 0.0,
            1.0, 1.0,
            1.0, 0.0,
            1.0, 1.0,
            0.0, 0.0
            ]
        tcData = numpy.array(numP*quadT, numpy.float32)
        self.tcBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.tcBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(tcData), tcData, GL_STATIC_DRAW) 
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At u, you define the vertices of the square, with sides centered around 
the origin and measuring 0.2 in length. The vertex ordering is the same as 
for a couple of GL_TRIANGLES. You then create a numpy array at v by repeating 
these vertices numP times—one quad for each particle in the system. (All the 
geometry you are drawing is put into one big array.)

Next, you put these vertices into a vertex buffer object, as you did in 
Chapter 9. The VBO is created at w and bound at x; then at y, the bound 
buffer is filled with the vertex data. The 4*len(vertexData) code specifies that 
4 bytes are needed for each element in the vertexData array. 

Finally, you define the texture coordinates of the quad at z, and the 
lines of code that follow set up the associated VBO.

Defining the Time-Lag Array for the Particles
Next, define the time-lag array for the particles. You want the time lag to be 
the same for each set of four vertices, which represent a square-shaped par-
ticle, as you can see in the following code:

        # time lags 
u         timeData = numpy.repeat(0.005*numpy.arange(numP, dtype=numpy.float32), 

                                4)
        self.timeBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.timeBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(timeData), timeData,  
                     GL_STATIC_DRAW) 

At u, numpy.arange() creates an array of increasing values of the form 
[0, 1, ... , numP–1]. Multiplying this array by 0.005 and using numpy.repeat() 
with an argument of 4 produces an array of the form [0.0, 0.0, 0.0, 0.0, 0.005, 
0.005, 0.005, 0.005, ...]. The code that follows sets up the VBO.

Setting the Initial Particle Velocities
You create the initial velocities of the particles next. The goal is to create 
a spread of random velocities within a certain maximum angular displace-
ment from the vertical axis. Here’s the code:

        # velocites
        velocities = []
        # cone angle

u         coneAngle = math.radians(20.0)
        # set up particle velocities
        for i in range(numP):
            # inclination

v             angleRatio = random.random()
            a = angleRatio*coneAngle
            # azimuth

w             t = random.random()*(2.0*math.pi)
            # get velocity on sphere

x             vx = math.sin(a)*math.cos(t)
            vy = math.sin(a)*math.sin(t)
            vz = math.cos(a)
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            # speed decreases with angle
y             speed = 15.0*(1.0 - angleRatio*angleRatio)

            # add a set of calculated velocities
z             velocities += 6*[speed*vx, speed*vy, speed*vz]

        # set up velocity vertex buffer
        self.velBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.velBuffer)

{         velData = numpy.array(velocities, numpy.float32)
        glBufferData(GL_ARRAY_BUFFER, 4*len(velData), velData, GL_STATIC_DRAW)

At u, you define the cone angle used to restrict the trajectory of the 
fountain particles. (Notice the conversion from degrees to radians using 
the built-in math.radians() method.) Next, you calculate a velocity for 
each particle using the formulas discussed in “Modeling the Motion of a 
Particle” on page 162.

At v, you compute a random fraction of the maximum inclination 
angle, which the lines that follow use to compute the current inclination. 
Next, at w, you calculate the azimuth, and because random.random() returns 
a value in [0, 1], you multiply the azimuth by 2.0*math.pi to get a random 
angle from 0 to 2p radians. 

Starting at x, you compute the velocity vector on the unit sphere using 
the spherical coordinate formula. At y, use the angle ratio from v to 
calculate a velocity inversely proportional to the vertical angle. Calculate the 
particle’s final velocity at z and repeat this value for all six vertices of the 
two triangles. At {, you create a numpy array from the Python list, and you’re 
ready to create a VBO for velocities. Finally, you enable all vertex attri-
butes and set the data format for the vertex buffers. (Because this pro-
cess is similar to what you did in Chapter 9, I’ll skip the discussion here and 
move on to the vertex shader.)

Creating the Vertex Shader
The vertex shader computes the trajectory of the particle system by process-
ing individual vertices. Here’s its code:

#version 330 core

in vec3 aVel;
in vec3 aVert;
in float aTime0;
in vec2 aTexCoord;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 bMatrix;
uniform float uTime;
uniform float uLifeTime;
uniform vec4 uColor;
uniform vec3 uPos;

out vec4 vCol;
out vec2 vTexCoord; 
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The vertex shader is executed for every vertex of the quad, for all 
quads in the particle system. It first defines some variables in attribute 
arrays, which represent the array you put into the VBOs; then uniform vari-
ables that remain constant while the shader is executed; and finally out 
quantities, which are set in the vertex shader and passed to the fragment 
shader for interpolation. 

Now let’s look at the shader’s main() function:

void main() {
    // set position

u     float dt = uTime - aTime0;
v     float alpha = clamp(1.0 - 2.0*dt/uLifeTime, 0.0, 1.0);
w     if(dt < 0.0 || dt > uLifeTime || alpha < 0.01) {

        // out of sight!
        gl_Position = vec4(0.0, 0.0, -1000.0, 1.0);
    }
    else {
        // calculate new position

x         vec3 accel = vec3(0.0, 0.0, -9.8);
        // apply a twist
        float PI = 3.14159265358979323846264;

y         float theta = mod(100.0*length(aVel)*dt, 360.0)*PI/180.0;
z         mat4 rot = mat4(vec4(cos(theta), sin(theta), 0.0, 0.0),

                vec4(-sin(theta), cos(theta), 0.0, 0.0),
                vec4(0.0, 0.0, 1.0, 0.0),
                vec4(0.0, 0.0, 0.0, 1.0));
        // apply billboard matrix

{         vec4 pos2 = bMatrix*rot*vec4(aVert, 1.0);
        // calculate position

|         vec3 newPos = pos2.xyz + uPos + aVel*dt + 0.5*accel*dt*dt;
        // apply transformations

}         gl_Position = uPMatrix * uMVMatrix * vec4(newPos, 1.0); 
    }
    // set color

~     vCol = vec4(uColor.rgb, alpha);
    // set texture coordinates
    vTexCoord = aTexCoord;
}

At u, you calculate the current elapsed time for a particular particle, 
which is the difference between the current time step and the time lag for 
that particle. Then you calculate an alpha value for the vertex at v, which 
decreases as a function of elapsed time and has the particles fade over time. 
You use the clamp() method in GLSL to restrict the values to the range [0, 1]. 

To make the particles disappear once their lifetime is over, you put 
them outside your OpenGL view frustum, where they are clipped away. 
At w, you see whether a particle’s lifetime is up (as set in the constructor 
of the par ticle system) or whether its alpha has dropped below a certain 
value, in which case the final position is set to a value outside your view. 
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You set particle acceleration to 9.8 m/s2 at x, the rate of acceleration 
due to Earth’s gravity. To make the particles spin quickly as they fly out of 
the fountain with their higher initial velocity, use the mod() method (similar 
to the Python modulus operator, %), and at y, restrict the angle values to the 
range [0, 360]. At z, apply this calculated angle as a rotation around the 
z-axis of the quad according to the formula for the transformation matrix 
for rotation by an angle q around the z-axis as follows:
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At {, you apply two transformations to the particle’s vertices: the spin 
rotation just computed and the rotation for the billboarding using bMatrix. 
Calculate the current position of the vertex at | using the equation of 
motion discussed earlier. (The uPos in this line simply lets you position the 
origin of the fountain wherever you want.)

At }, you apply the modelview and projection matrices to the particle 
position. Finally, at ~ and in the following line, set the colors and texture 
coordinates to pass to the fragment shader for interpolation. (Note that you 
set the alpha of the vertex based on the computation at v.)

Creating the Fragment Shader
Now let’s look at the fragment shader, which sets the color of the pixels.

#version 330 core

uniform sampler2D uSampler;
in vec4 vCol;
in vec2 vTexCoord;
out vec4 fragColor;

void main() {
    // get the texture color

u     vec4 texCol = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
    // multiply texture color by set vertex color; use the vertex color alpha 

v     fragColor = vec4(texCol.rgb*vCol.rgb, vCol.a);
} 

At u, you use the GLSL texture2D() method to look up the base texture 
color (the color you look up from the image used as texture) for the spark 
image using the texture coordinates passed in from the vertex shader. Then, 
you multiply this texture color value by the color of the spark fountain and 
set the resulting color to the output variable fragColor v. The fountain color 
is set randomly by the restart() method of ParticleSystem each time a par-
ticle system is restarted. The alpha is set based on the calculation done in 
the vertex shader and is used for blending during rendering.
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Rendering
The code follows these steps to render the fountain particle system:

1. Enables the vertex/fragment program

2. Sets the modelview and projection matrices

3. Computes and sets the billboard matrix based on the current 
camera view

4. Sets uniform variables for position, time, lifetime, and color

5. Enables vertex attribute arrays for vertices, texture coordinates, time 
lags, and velocities

6. Enables texturing and binding to the particle spark texture

7. Disables depth buffer writing

8. Enables OpenGL blending

9. Draws the geometry

Let’s take a look at code snippets that implement some of these steps. 

Computing the rotation Matrix for Billboarding

This code computes the rotation matrix for billboarding:

            N = camera.eye - camera.center
u             N /= numpy.linalg.norm(N)

            U = camera.up
            U /= numpy.linalg.norm(U)
            R = numpy.cross(U, N)
            U2 = numpy.cross(N, R)

v             bMatrix = numpy.array([R[0], U2[0], N[0], 0.0, 
                                   R[1], U2[1], N[1], 0.0, 
                                   R[2], U2[2], N[2], 0.0, 
                                   0.0, 0.0, 0.0, 1.0], numpy.float32) 

w             glUniformMatrix4fv(self.bMatrixU, 1, GL_TRUE, bMatrix)

You already looked at the theory behind formulating a rotation 
matrix that will keep a quad “billboarded,” or aligned toward the view. 
(This is required so that the fountain particles always face your viewing 
direction.) At u, you use numpy.linalg.norm() to normalize the vectors. 
(This makes the magnitude of the vector equal to 1.) At v, you assemble 
the rotation matrix as a numpy array and then set it in the program at w.

the Main rendering Code

The main rendering code uses alpha blending to give transparency to the 
particle system. This technique is commonly used in OpenGL to render 
semitransparent objects.

        # enable texture
u         glActiveTexture(GL_TEXTURE0)
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v         glBindTexture(GL_TEXTURE_2D, self.texid)
w         glUniform1i(self.samplerU, 0)

        # turn depth mask off
        if self.disableDepthMask:

x             glDepthMask(GL_FALSE)

        # enable blending
        if self.enableBlend:

y             glBlendFunc(GL_SRC_ALPHA, GL_ONE)
z             glEnable(GL_BLEND)

        # bind VAO
{         glBindVertexArray(self.vao)

        # draw
|         glDrawArrays(GL_TRIANGLES, 0, 6*self.numP)

At u, you set the first OpenGL texture unit, (GL_TEXTURE0), active. 
You have only one texture unit, but because multiple texture units can be 
active at the same time in an OpenGL context, it’s good programming 
practice to call each explicitly. At v, you activate the texture object that you 
created using the spark image with glutils.loadTexture() in the constructor 
of ParticleSystem. 

Textures are accessed from within shaders using samplers, and at w, 
you set the sampler variable to use the first texture unit, GL_TEXTURE0. You 
then use OpenGL blending to cut out the black pixels in the texture, but 
these “invisible” pixels still have a depth value associated with them and 
can obscure parts of other particles that are behind them. To avoid this, dis-
able writing to the depth buffer at x. 

n o t e  Strictly speaking, this is the wrong way to draw because if you mix these semitranspar-
ent objects with opaque objects, they will not be depth tested properly. The correct way 
to render such a scene is to first draw the opaque objects and then enable blending, 
sort the semitransparent objects in depth from back to front, and draw them last. But 
because you have so many moving particles, this simple approximation is acceptable, 
and in the end, it looks fine, which is what you care about. 

At y, you set up the OpenGL blending function to use the alpha in 
the source pixels coming from the fragment shader, and at z, you enable 
OpenGL blending. Then, bind to the created VAO at {, which enables all 
the vertex attributes you’ve set up, and draw the bound vertex buffer objects 
on the screen at |.

The Camera Class
Finally, the Camera class sets up the OpenGL viewing parameters:

# a simple camera class
class Camera:
    """helper class for viewing"""

u     def __init__(self, eye, center, up):



174   Chapter 10

        self.r = 10.0
        self.theta = 0
        self.eye = numpy.array(eye, numpy.float32)
        self.center = numpy.array(center, numpy.float32)
        self.up = numpy.array(up, numpy.float32)

    def rotate(self):
        """rotate eye by one step"""

v         self.theta = (self.theta + 1) % 360
        # recalculate eye

w         self.eye = self.center + numpy.array([
                self.r*math.cos(math.radians(self.theta)),
                self.r*math.sin(math.radians(self.theta)), 
                0.0], numpy.float32) 

Three-dimensional perspective view is typically characterized by three 
parameters: an eye position, an up vector, and a direction vector. The Camera 
class groups these parameters and provides a convenient way to rotate the 
view for every time step. 

The constructor at u sets the initial values of the camera object. When 
the rotate() method is called, you increment the rotation angle v and cal-
culate the new eye position and direction after the rotation w. 

n o t e  The point (r cos(q), r sin(q)) represents a point on a circle of radius r centered at the 
origin, and q is the angle that the line from the origin to the point makes with the 
x-axis. The translation using center ensures this works even if your center of rotation 
is not at the origin.

the complete Particle system code
This is the complete code for the particle system. You can also find it as 
ps.py at https://github.com/electronut/pp/tree/master/particle-system/.

import sys, random, math
import OpenGL
from OpenGL.GL import *
import numpy
import glutils

strVS = """
#version 330 core

in vec3 aVel;
in vec3 aVert;
in float aTime0;
in vec2 aTexCoord;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 bMatrix;
uniform float uTime;

https://github.com/electronut/pp/tree/master/particle-system/
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uniform float uLifeTime;
uniform vec4 uColor;
uniform vec3 uPos;

out vec4 vCol;
out vec2 vTexCoord;

void main() {
    // set position
    float dt = uTime - aTime0;
    float alpha = clamp(1.0 - 2.0*dt/uLifeTime, 0.0, 1.0);
    if(dt < 0.0 || dt > uLifeTime || alpha < 0.01) {
        // out of sight!
        gl_Position = vec4(0.0, 0.0, -1000.0, 1.0);
    }
    else {
        // calculate new position
        vec3 accel = vec3(0.0, 0.0, -9.8);
        // apply a twist
        float PI = 3.14159265358979323846264;
        float theta = mod(100.0*length(aVel)*dt, 360.0)*PI/180.0;
        mat4 rot =  mat4(vec4(cos(theta), sin(theta), 0.0, 0.0),
                vec4(-sin(theta), cos(theta), 0.0, 0.0),
                vec4(0.0, 0.0, 1.0, 0.0),
                vec4(0.0, 0.0, 0.0, 1.0));
        // apply billboard matrix
        vec4 pos2 =  bMatrix*rot*vec4(aVert, 1.0);
        // calculate position
        vec3 newPos = pos2.xyz + uPos + aVel*dt + 0.5*accel*dt*dt;
        // apply transformations
        gl_Position = uPMatrix * uMVMatrix * vec4(newPos, 1.0); 
    }
    // set color
    vCol = vec4(uColor.rgb, alpha);
    // set tex coords
    vTexCoord = aTexCoord;
}
"""

strFS = """
#version 330 core

uniform sampler2D uSampler;
in vec4 vCol;
in vec2 vTexCoord;
out vec4 fragColor;

void main() {
    // get texture color
    vec4 texCol = texture(uSampler, vec2(vTexCoord.s, vTexCoord.t));
    // multiply by set vertex color; use the vertex color alpha 
    fragColor = vec4(texCol.rgb*vCol.rgb, vCol.a);
}
"""



176   Chapter 10

# a simple camera class
class Camera:
    """helper class for viewing"""
    def __init__(self, eye, center, up):
        self.r = 10.0
        self.theta = 0
        self.eye = numpy.array(eye, numpy.float32)
        self.center = numpy.array(center, numpy.float32)
        self.up = numpy.array(up, numpy.float32)

    def rotate(self):
        """rotate eye by one step"""
        self.theta = (self.theta + 1) % 360
        # recalculate eye
        self.eye = self.center + numpy.array([
                self.r*math.cos(math.radians(self.theta)),
                self.r*math.sin(math.radians(self.theta)), 
                0.0], numpy.float32)
    
# particle system class
class ParticleSystem:
    
    # initialization
    def __init__(self, numP):
        # number of particles
        self.numP = numP
        # time variable
        self.t = 0.0 
        self.lifeTime = 5.0
        self.startPos = numpy.array([0.0, 0.0, 0.5])
        # load texture
        self.texid = glutils.loadTexture('star.png')
        # create shader
        self.program = glutils.loadShaders(strVS, strFS)
        glUseProgram(self.program)

        # set sampler
        texLoc = glGetUniformLocation(self.program, b"uTex")
        glUniform1i(texLoc, 0)

        # uniforms
        self.timeU =  glGetUniformLocation(self.program, b"uTime")
        self.lifeTimeU =  glGetUniformLocation(self.program, b"uLifeTime")
        self.pMatrixUniform = glGetUniformLocation(self.program, b'uPMatrix')
        self.mvMatrixUniform = glGetUniformLocation(self.program, b"uMVMatrix")
        self.bMatrixU = glGetUniformLocation(self.program, b"bMatrix")
        self.colorU = glGetUniformLocation(self.program, b"uColor")
        self.samplerU = glGetUniformLocation(self.program, b"uSampler")
        self.posU = glGetUniformLocation(self.program, b"uPos")

        # attributes
        self.vertIndex = glGetAttribLocation(self.program, b"aVert")
        self.texIndex = glGetAttribLocation(self.program, b"aTexCoord")
        self.time0Index = glGetAttribLocation(self.program, b"aTime0")
        self.velIndex = glGetAttribLocation(self.program, b"aVel")
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        # render flags
        self.enableBillboard = True
        self.disableDepthMask = True
        self.enableBlend = True

        # which texture to use
        self.useStarTexture = True
        # restart - first time
        self.restart(numP)

    # step 
    def step(self):
        # increment time
        self.t += 0.01
        
    # restart particle system
    def restart(self, numP):
        # set number of particles
        self.numP = numP
        
        # time variables 
        self.t = 0.0 
        self.lifeTime = 5.0

        # color
        self.col0 = numpy.array([random.random(), random.random(), 
                                 random.random(), 1.0])        

        # create Vertex Arrays Object (VAO)
        self.vao = glGenVertexArrays(1)
        # bind VAO
        glBindVertexArray(self.vao)

        # create attribute arrays and vertex buffers:
                        
        # vertices
        s = 0.2
        quadV = [
             -s, s, 0.0, 
             -s, -s, 0.0,
             s, s, 0.0,
             s, -s, 0.0,
             s, s, 0.0,
             -s, -s, 0.0
             ]
        vertexData = numpy.array(numP*quadV, numpy.float32)
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)

        # texture coordinates
        quadT = [
            0.0, 1.0, 
            0.0, 0.0,



178   Chapter 10

            1.0, 1.0,
            1.0, 0.0,
            1.0, 1.0,
            0.0, 0.0
            ]
        tcData = numpy.array(numP*quadT, numpy.float32)
        self.tcBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.tcBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(tcData), tcData, GL_STATIC_DRAW)

        # time lags 
        timeData = numpy.repeat(0.005*numpy.arange(numP, dtype=numpy.float32), 
                                4)
        self.timeBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.timeBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(timeData), timeData, 
                     GL_STATIC_DRAW)

        # velocites
        velocities = []
        # cone angle
        coneAngle = math.radians(20.0)
        # set up particle velocities
        for i in range(numP):
            # inclination
            angleRatio = random.random()
            a = angleRatio*coneAngle
            # azimuth
            t = random.random()*(2.0*math.pi)
            # get veocity on sphere
            vx = math.sin(a)*math.cos(t)
            vy = math.sin(a)*math.sin(t)
            vz = math.cos(a)
            # speed decreases with angle
            speed = 15.0*(1.0 - angleRatio*angleRatio)
            # add a set of calculated velocities
            velocities += 6*[speed*vx, speed*vy, speed*vz]
        # set up velocity vertex buffer
        self.velBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.velBuffer)
        velData = numpy.array(velocities, numpy.float32)
        glBufferData(GL_ARRAY_BUFFER, 4*len(velData), velData, GL_STATIC_DRAW)

        # enable arrays
        glEnableVertexAttribArray(self.vertIndex)
        glEnableVertexAttribArray(self.texIndex)
        glEnableVertexAttribArray(self.time0Index)
        glEnableVertexAttribArray(self.velIndex)

        # set buffers 
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0, None)

        glBindBuffer(GL_ARRAY_BUFFER, self.tcBuffer)
        glVertexAttribPointer(self.texIndex, 2, GL_FLOAT, GL_FALSE, 0, None)
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        glBindBuffer(GL_ARRAY_BUFFER, self.velBuffer)
        glVertexAttribPointer(self.velIndex, 3, GL_FLOAT, GL_FALSE, 0, None)

        glBindBuffer(GL_ARRAY_BUFFER, self.timeBuffer)
        glVertexAttribPointer(self.time0Index, 1, GL_FLOAT, GL_FALSE, 0, None)

        # unbind VAO
        glBindVertexArray(0)

    # render the particle system
    def render(self, pMatrix, mvMatrix, camera):        
        # use shader
        glUseProgram(self.program)
        
        # set projection matrix
        glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix)        
        # set modelview matrix
        glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix)
        # set up a billboard matrix to keep quad aligned to view direction
        if self.enableBillboard:
            N = camera.eye - camera.center
            N /= numpy.linalg.norm(N)
            U = camera.up
            U /= numpy.linalg.norm(U)
            R = numpy.cross(U, N)
            U2 = numpy.cross(N, R)
            bMatrix = numpy.array([R[0], U2[0], N[0], 0.0, 
                                   R[1], U2[1], N[1], 0.0, 
                                   R[2], U2[2], N[2], 0.0, 
                                   0.0,  0.0,  0.0,  1.0], numpy.float32) 
            glUniformMatrix4fv(self.bMatrixU, 1, GL_TRUE, bMatrix)
        else:
            # identity matrix
            bMatrix = numpy.array([1.0, 0.0, 0.0, 0.0, 
                                   0.0, 1.0, 0.0, 0.0, 
                                   0.0, 0.0, 1.0, 0.0, 
                                   0.0, 0.0, 0.0, 1.0], numpy.float32)  
            glUniformMatrix4fv(self.bMatrixU, 1, GL_FALSE, bMatrix)
        
        # set start position 
        glUniform3fv(self.posU, 1, self.startPos)
        # set time
        glUniform1f(self.timeU, self.t)
        #set lifetime
        glUniform1f(self.lifeTimeU, self.lifeTime)
        # set color
        glUniform4fv(self.colorU, 1, self.col0)

        # enable texture
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_2D, self.texid)
        glUniform1i(self.samplerU, 0)
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        # turn depth mask off
        if self.disableDepthMask:
            glDepthMask(GL_FALSE)

        # enable blending
        if self.enableBlend:
            glBlendFunc(GL_SRC_ALPHA, GL_ONE)
            glEnable(GL_BLEND)

        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        glDrawArrays(GL_TRIANGLES, 0, 6*self.numP)
        # unbind VAO
        glBindVertexArray(0)

        # disable blend
        if self.enableBlend:
            glDisable(GL_BLEND)

        # turn depth mask on
        if self.disableDepthMask:
            glDepthMask(GL_TRUE)

        # disable texture
        glBindTexture(GL_TEXTURE_2D, 0)

That’s all the code for the spark fountain, but let’s also draw a red box 
to represent the source of the fountain particle system.

the Box code
To keep the viewer’s attention focused on the fountain, just draw a red cube 
without any lighting.

import sys, random, math
import OpenGL
from OpenGL.GL import *
import numpy
import glutils

strVS = """
#version 330 core

in vec3 aVert;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
out vec4 vCol;

void main() {
    // apply transformations
    gl_Position = uPMatrix * uMVMatrix * vec4(aVert, 1.0); 
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    // set color
    vCol = vec4(0.8, 0.0, 0.0, 1.0);
}
"""

strFS = """
#version 330 core

in vec4 vCol;
out vec4 fragColor;

void main() {
    // use vertex color
    fragColor = vCol;
}
"""

class Box:
    def __init__(self, side):
        self.side = side

        # load shaders
        self.program = glutils.loadShaders(strVS, strFS)
        glUseProgram(self.program)
        
        s = side/2.0
        vertices = [
             -s, s, -s, 
             -s, -s, -s,
             s, s, -s,
             s, -s, -s,
             s, s, -s,
             -s, -s, -s,
             
             -s, s, s, 
             -s, -s, s,
             s, s, s,
             s, -s, s,
             s, s, s,
             -s, -s, s,

             -s, -s, s, 
             -s, -s, -s,
             s, -s, s,
             s, -s, -s,
             s, -s, s,
             -s, -s, -s,

             -s, s, s, 
             -s, s, -s,
             s, s, s,
             s, s, -s,
             s, s, s,
             -s, s, -s,
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             -s, -s, s, 
             -s, -s, -s,
             -s, s, s,
             -s, s, -s,
             -s, s, s,
             -s, -s, -s,

             s, -s, s, 
             s, -s,-s,
             s, s, s,
             s, s, -s,
             s, s, s,
             s, -s,-s
             ]
                
        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)
        # set up VBOs
        vertexData = numpy.array(vertices, numpy.float32)
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)
        #enable arrays
        self.vertIndex = glGetAttribLocation(self.program, "aVert")
        glEnableVertexAttribArray(self.vertIndex)
        # set buffers 
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0, None)
        # unbind VAO
        glBindVertexArray(0)

    def render(self, pMatrix, mvMatrix):

        # use shader
        glUseProgram(self.program)
        
        # set projection matrix
        glUniformMatrix4fv(glGetUniformLocation(self.program, 'uPMatrix'), 
                           1, GL_FALSE, pMatrix)
        
        # set modelview matrix
        glUniformMatrix4fv(glGetUniformLocation(self.program, 'uMVMatrix'), 
                           1, GL_FALSE, mvMatrix)

        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        glDrawArrays(GL_TRIANGLES, 0, 36)
        # unbind VAO
        glBindVertexArray(0)
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The code for the box uses simple vertex and fragment shaders to draw 
a cube. The concepts used here are identical to what we discussed earlier in 
this chapter and in Chapter 9.

the code for the main Program
The main source file for the project, psmain.py, sets up the GLFW window, 
handles keyboard events, and creates the particle system. Skip ahead to 
“The Complete Main Program Code” on page 186 if you’d like to see the 
full program code.

class PSMaker:
    """GLFW Rendering window class for Particle System"""
    def __init__(self):

u     self.camera = Camera([15.0, 0.0, 2.5],
                         [0.0, 0.0, 2.5],
                         [0.0, 0.0, 1.0])
        self.aspect = 1.0
        self.numP = 300
        self.t = 0
        # flag to rotate camera view
        self.rotate = True

        # save current working directory
        cwd = os.getcwd()

        # initialize glfw; this changes cwd
v         glfw.glfwInit()

        # restore cwd
        os.chdir(cwd)

        # version hints
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_PROFILE, 
                            glfw.GLFW_OPENGL_CORE_PROFILE)

        # make a window
        self.width, self.height = 640, 480
        self.aspect = self.width/float(self.height)
        self.win = glfw.glfwCreateWindow(self.width, self.height, 
                                         b"Particle System")

        # make context current
        glfw.glfwMakeContextCurrent(self.win)

        # initialize GL
        glViewport(0, 0, self.width, self.height)
        glEnable(GL_DEPTH_TEST)
        glClearColor(0.2, 0.2, 0.2,1.0)



184   Chapter 10

        # set window callbacks
        glfw.glfwSetMouseButtonCallback(self.win, self.onMouseButton)
        glfw.glfwSetKeyCallback(self.win, self.onKeyboard)
        glfw.glfwSetWindowSizeCallback(self.win, self.onSize)

        # create 3D
w         self.psys = ParticleSystem(self.numP)
x         self.box = Box(1.0)

        # exit flag
y         self.exitNow = False 

The class PSMaker creates the particle system, handles the GLFW window, 
and manages the rendering of the fountain and the box that represents its 
source. At u, you create a Camera object, which you use to set up the viewing 
parameters in OpenGL. The code block beginning at v sets up the GLFW 
window; at w, you create the ParticleSystem object, and at x, you create the 
Box object. At y, an exit flag is used in the main GLFW render loop, which 
you’ll look at next.

Updating the Particles at Each Step
You create the animation by updating a time variable in your main program 
loop, which in turn updates the time variable in the vertex shader. The 
next frame is computed and rendered using this new time value, thus updat-
ing the position of the particles. The shader computes the new orientation of 
the particles, also making them spin. In addition, the shader computes the 
alpha values as a function of this time variable, which is used in the final 
rendering to make the sparks fade out. 

The step() method updates the particle system for each time step.

    def step(self):
        # increment time

u         self.t += 10
v         self.psys.step()

        # rotate eye
        if self.rotate:

w             self.camera.rotate()
        # restart every 5 seconds
        if not int(self.t) % 5000:

x             self.psys.restart(self.numP) 

At u, you increment the time variable, which tracks elapsed time in 
milliseconds. The code at v calls the step() method in ParticleSystem so it can 
update itself. If the flag is set, the camera is rotated at w. Every five seconds 
(5,000 milli seconds), the particle system is restarted x.
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The Keyboard Handler
Now let’s look at the keyboard handler for the GLFW window.

u     def onKeyboard(self, win, key, scancode, action, mods):
        #print 'keyboard: ', win, key, scancode, action, mods
        if action == glfw.GLFW_PRESS:
            # ESC to quit
            if key == glfw.GLFW_KEY_ESCAPE:
                self.exitNow = True
            elif key == glfw.GLFW_KEY_R:
                self.rotate = not self.rotate
            elif key == glfw.GLFW_KEY_B:
                # toggle billboarding
                self.psys.enableBillboard = not self.psys.enableBillboard
            elif key == glfw.GLFW_KEY_D:
                # toggle depth mask
                self.psys.disableDepthMask = not self.psys.disableDepthMask
            elif key == glfw.GLFW_KEY_T:
                # toggle transparency
                self.psys.enableBlend = not self.psys.enableBlend

The keyboard handler at u is mainly there to make it easy for you to 
see what happens when you turn off the various rendering tricks that you 
employed to draw the particle system. This code lets you toggle rotation, 
billboarding, the depth mask, and transparency.

Managing the Main Program Loop
You have to manage your own main program loop when using GLFW. 
Here’s the loop you use in this program:

    def run(self):
        # initializer timer
        glfw.SetTime(0)
        t = 0.0

u         while not glfw.glfwWindowShouldClose(self.win) and not self.exitNow:
            # update every x seconds

v             currT = glfw.glfwGetTime()
            if currT - t > 0.01:
                # update time
                t = currT

                # clear
                glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

                # render
                pMatrix = glutils.perspective(100.0, self.aspect, 0.1, 100.0)
                # modelview matrix
                mvMatrix = glutils.lookAt(self.camera.eye, self.camera.center,
                                          self.camera.up)
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                # draw nontransparent object first
w                 self.box.render(pMatrix, mvMatrix)

                # render
x                 self.psys.render(pMatrix, mvMatrix, self.camera)

                # step
y                 self.step()

                glfw.glfwSwapBuffers(self.win)
                # poll for and process events
                glfw.glfwPollEvents()
        # end
        glfw.glfwTerminate() 

This code is almost identical to the loop you used in Chapter 9. At u, 
the while loop exits if either the exit flag is set or the GLFW window closes. 
At v and in the following line, you use the GLFW timer to render only 
when a certain amount of time (0.1 seconds) has elapsed, thus controlling 
the frame rate of the rendering. You draw the box at w and the particle 
system at x. (The order of rendering is important: transparent objects are 
always drawn last so they can be blended and depth buffered correctly with 
respect to the opaque objects in a scene.) At y, you update the particle sys-
tem for the current time step.

the complete main Program code
Here is the complete code for psmain.py. You can also find this code at 
https://github.com/electronut/pp/tree/master/particle-system/.

import sys, os, math, numpy
import OpenGL
from OpenGL.GL import *
import numpy    
from ps import ParticleSystem, Camera
from box import Box
import glutils
import glfw

class PSMaker:
    """GLFW Rendering window class for Particle System"""
    def __init__(self):
        self.camera = Camera([15.0, 0.0, 2.5],
                             [0.0, 0.0, 2.5],
                             [0.0, 0.0, 1.0])
        self.aspect = 1.0
        self.numP = 300
        self.t = 0
        # flag to rotate camera view
        self.rotate = True

https://github.com/electronut/pp/tree/master/particle-system/
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        # save current working directory
        cwd = os.getcwd()

        # initialize glfw; this changes cwd
        glfw.glfwInit()
        
        # restore cwd
        os.chdir(cwd)

        # version hints
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_PROFILE, 
                            glfw.GLFW_OPENGL_CORE_PROFILE)

        # make a window
        self.width, self.height = 640, 480
        self.aspect = self.width/float(self.height)
        self.win = glfw.glfwCreateWindow(self.width, self.height, 
                                         b"Particle System")
        # make context current
        glfw.glfwMakeContextCurrent(self.win)
        
        # initialize GL
        glViewport(0, 0, self.width, self.height)
        glEnable(GL_DEPTH_TEST)
        glClearColor(0.2, 0.2, 0.2,1.0)

        # set window callbacks
        glfw.glfwSetMouseButtonCallback(self.win, self.onMouseButton)
        glfw.glfwSetKeyCallback(self.win, self.onKeyboard)
        glfw.glfwSetWindowSizeCallback(self.win, self.onSize)        

        # create 3D
        self.psys = ParticleSystem(self.numP)
        self.box = Box(1.0)

        # exit flag
        self.exitNow = False

        
    def onMouseButton(self, win, button, action, mods):
        #print 'mouse button: ', win, button, action, mods
        pass

    def onKeyboard(self, win, key, scancode, action, mods):
        #print 'keyboard: ', win, key, scancode, action, mods
        if action == glfw.GLFW_PRESS:
            # ESC to quit
            if key == glfw.GLFW_KEY_ESCAPE: 
                self.exitNow = True
            elif key == glfw.GLFW_KEY_R:
                self.rotate = not self.rotate
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            elif key == glfw.GLFW_KEY_B:
                # toggle billboarding
                self.psys.enableBillboard = not self.psys.enableBillboard
            elif key == glfw.GLFW_KEY_D:
                # toggle depth mask
                self.psys.disableDepthMask = not self.psys.disableDepthMask
            elif key == glfw.GLFW_KEY_T:
                # toggle transparency
                self.psys.enableBlend = not self.psys.enableBlend
        
    def onSize(self, win, width, height):
        #print 'onsize: ', win, width, height
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        glViewport(0, 0, self.width, self.height)

    def step(self):
        # increment time
        self.t += 10
        self.psys.step()
        # rotate eye
        if self.rotate:
            self.camera.rotate()
        # restart every 5 seconds 
        if not int(self.t) % 5000:
            self.psys.restart(self.numP)

    def run(self):
        # initializer timer
        glfw.glfwSetTime(0)
        t = 0.0
        while not glfw.glfwWindowShouldClose(self.win) and not self.exitNow:
            # update every x seconds
            currT = glfw.glfwGetTime()
            if currT - t > 0.01:
                # update time
                t = currT

                # clear
                glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

                # render
                pMatrix = glutils.perspective(100.0, self.aspect, 0.1, 100.0)
                # modelview matrix
                mvMatrix = glutils.lookAt(self.camera.eye, self.camera.center, 
                                          self.camera.up)
                
                # draw nontransparent object first
                self.box.render(pMatrix, mvMatrix)

                # render
                self.psys.render(pMatrix, mvMatrix, self.camera)
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                # step 
                self.step()

                glfw.glfwSwapBuffers(self.win)
                # poll for and process events
                glfw.glfwPollEvents()
        # end
        glfw.glfwTerminate()

# main() function
def main():
    # use sys.argv if needed
    print('starting particle system...')
    prog = PSMaker()
    prog.run()

# call main
if __name__ == '__main__':
    main()

running the Program
To run the project, enter the following:

$ python3 psmain.py

Figure 10-1 at the beginning of this chapter shows the output. 

summary
In this chapter, you created a fountain particle system using Python and 
OpenGL. You learned to create a mathematical model for the particle sys-
tem, set up shader programs, and use some OpenGL tricks to render the 
particles in a realistic-looking way.

experiments!
Here are some ideas for more ways to experiment with particle system 
animation:

1. See what happens if you don’t have a time lag between the ejection of 
each particle.

2. Make the particles in the fountain grow in size as they shoot up. 
(Hint: scale the quad vertices in the vertex shader.)

3. As written, this code has each particle follow a perfect parabolic arc as 
it’s ejected from the fountain. Add some randomness to the path of the 
particles. (Hint: research the noise() method in GLSL, which you can 
use in the vertex shader.)
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4. The particles in the fountain take a parabolic path, rising and then 
falling because of gravitational effects. Can you make them bounce off 
the floor when they fall? You may need to increase the lifetime of the 
particles to accomplish this. (Hint: the floor is at z = 0.0. In the vertex 
shader, reverse the z-component of the velocities as the points come 
close to the floor.)



11
v o l u m e  r e n d e r i n g

MRI and CT scans are diagnostic processes 
that create volumetric data that consists of 

a set of 2D images showing cross sections 
through a 3D volume. Volume rendering  is a com-

puter graphics technique used to construct 3D images 
from this type of volumetric data. Although volume 
rendering is commonly used to analyze medical scans, it can also be used to 
create 3D scientific visualizations in academic disciplines such as geology, 
archeology, and molecular biology.

The data captured by MRI and CT scans typically follows the form of a 
3D grid of Nx×Ny×Nz, or Nz 2D “slices,” where each slice is an image of size 
Nx×Ny. Volume-rendering algorithms are used to display the collected slice 
data with some type of transparency, and various techniques are used to 
accentuate the parts of the rendered volume that are of interest. 

In this project, you’ll look at a volume-rendering algorithm called  
volume ray casting, which takes full advantage of the graphics-processing 
unit (GPU) to perform computations using OpenGL Shading Language 
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(GLSL) shaders. Your code executes for every pixel onscreen and leverages 
the GPU, which is designed to do parallel computations efficiently. You’ll 
use a folder of 2D images consisting of slices from a 3D data set to construct a 
volume- rendered image using the volume ray casting algorithm. You’ll also 
implement a method to show 2D slices of the data in the x, y, and z direc-
tions so users can scroll through the slices using the arrow keys. Keyboard 
commands will let the user toggle between the 3D rendering and the 2D 
slices. 

Here are some of the topics covered in this project:

•	 Using GLSL for GPU computations

•	 Creating vertex and fragment shaders

•	 Representing 3D volumetric data and using the volume ray casting 
algorithm

•	 Using numpy arrays for 3D transformation matrices

how It works
There are various ways to render a 3D data set. In this project, you’ll use 
the volume ray casting method, which is an image -based rendering technique 
used to generate the final image from the 2D slice, pixel by pixel. In contrast, 
typical 3D rendering methods are object based: they begin with a 3D object 
representation and then apply transformations to generate the pixels in the 
projected 2D image.

In the volume ray casting method that you’ll use in this project, for each 
pixel in the output image, a ray is shot into the discrete 3D volumetric data 
set, which is typically represented as a cuboid. As the ray passes through 
the volume, the data is sampled at regular intervals, and the samples are 
combined, or composited, to compute the color value or intensity of the final 
image. (You might think of this process as similar to stacking a bunch of 
transparencies on top of each other and holding them up against a bright 
light to see a blend of all the sheets.)

While volume ray casting rendering implementations typically use 
techniques such as applying gradients to improve the appearance of the 
final render, filtering to isolate 3D features, and using spatial optimization 
techniques to improve speed, you’ll just implement the basic ray casting 
algorithm and composite the final image by x-ray casting. (My implemen-
tation is largely based on the seminal paper on this topic by Kruger and 
Westermann, published in 2003.1)

1. J. Kruger and R. Westermann, “Acceleration Techniques for GPU-based Volume 
Rendering,” IEEE Visualization, 2003.
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Data Format
For this project, you’ll use medical data from 3D scans from the Stanford 
Volume Data Archive.2 This archive offers a few excellent 3D medical data 
sets (both CT and MRI) of TIFF images, one for each 2D cross section 
of the volume. You’ll read a folder of these images into an OpenGL 3D 
texture; this is sort of like stacking a set of 2D images to form a cuboid, as 
shown in Figure 11-1. 

Figure 11-1: Building 3D volumetric data from 2D slices

Recall from Chapter 9 that a 2D texture in OpenGL is addressed with a 
2D coordinate (s, t). Similarly, a 3D texture is addressed using a 3D texture 
coordinate of the form (s, t, p). As you will see, storing the volumetric data 
as a 3D texture allows you to access the data quickly and provides you with 
interpolated values required by your ray casting scheme.

Generating Rays
Your goal in this project is to generate a perspective projection of the 3D 
volumetric data, as shown in Figure 11-2.

Figure 11-2 shows the OpenGL view frustum as discussed in Chapter 9. 
Specifically, it shows how a ray from the eye enters this frustum at the near 
plane, passes through the cubic volume (which contains the volumetric 
data), and exits from the rear at the far plane.

2. http://graphics.stanford.edu/data/voldata/

http://graphics.stanford.edu/data/voldata/
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Eye

Near plane
(output window)

Far plane

View frustum

Ray entry
to 3D

Ray entry to cube

Ray exit from cube

Figure 11-2: Perspective projection of 3D volumetric data

To implement ray casting, you need to generate rays that go into the 
volume. For each pixel in the output window shown in Figure 11-2, you gen-
erate a vector R that goes into the volume you consider a unit cube (which 
I’ll refer to as the color cube) defined between the coordinates (0, 0, 0) and 
(1, 1, 1). You color each point inside this cube with the RGB values equal to 
the 3D coordinates of the cube. The origin is colored (0, 0, 0), or black; the 
(1, 0, 0) corner is red; and the point on the cube diagonally opposite the 
origin is colored (1, 1, 1), or white. Figure 11-3 shows this cube.

Yellow

Green

Blue

Red

White

Figure 11-3: A color cube 
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n o t e  In OpenGL, a color can be represented as a strip of 8-bit unsigned values (r, g, b), 
where r, g, and b are in the range [0, 255]. It can also be represented as a 32-bit 
 floating-point value (r, g, b), where r, g, and b are in the range [0.0, 1.0]. These 
representations are equivalent. For example, the red color (255, 0, 0) in the former 
is the same as (1.0, 0.0, 0.0) in the latter.

To draw the cube, first draw its six faces using the OpenGL primitive 
GL_TRIANGLES. Then color each vertex and use the interpolation provided by 
OpenGL when it rasterizes polygons to take care of the colors between each 
vertex. For example, Figure 11-4(a) shows the three front-faces of the cube. 
The back-faces of the cube are drawn in Figure 11-4(b) by setting OpenGL 
to cull front-faces. 

A B C

Figure 11-4: Color cube used to compute rays

If you subtract the colors in Figure 11-4(a) from Figure 11-4(b) by sub-
tracting (r, g, b)front from (r, g, b)back, you actually compute a sect of vectors 
that go from the front to the back of the cube because each color (r, g, b) on 
this cube is the same as the 3D coordinate. Figure 11-4(c) shows the result. 
(Negative values have been flipped to positive for the  purposes of this illus-
tration because negative numbers cannot be displayed as colors directly.) 
Reading the color value (r, g, b) of a pixel, as shown in Figure 11-4(c), gives 
the (rx, ry, rz) coordinates for the ray passing into the volume at that point. 

Once you have the casting rays, you render them into an image or 2D 
texture for later use with OpenGL’s frame buffer object (FBO) feature. 
After this texture is generated, you can access it inside the shaders that 
you’ll use to implement the ray casting algorithm.

ray Casting in the GPU

To implement the ray casting algorithm, you first draw the back-faces of the 
color cube into an FBO. Next, the front-faces are drawn on the screen. The 
bulk of the ray casting algorithm happens in the fragment shader for this 
second rendering, which runs for each pixel in the output. The ray is com-
puted by subtracting the front-face color of the incoming fragment from 
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the back-face color of the color cube, which is read in from a texture. The 
computed ray is then used to accumulate and compute the final pixel value 
using the 3D volumetric texture data, available within the shader.

Showing 2D Slices

In addition to the 3D rendering, you show 2D slices of the data by extract-
ing the 2D cross section from the 3D data perpendicular to the x-, y-, or 
z-axis and applying that as a texture on a quad. Because you store the vol-
ume as a 3D texture, you can easily get the required data by specifying the 
texture coordinates (s, t, p). OpenGL’s built-in texture interpolation gives 
you the texture values anywhere inside the 3D texture.

Displaying the OpenGL Window
As in your other OpenGL projects, this project uses the GLFW library to 
display the OpenGL window. You’ll use handlers for drawing, for resizing 
the window, and for keyboard events. You’ll use keyboard events to toggle 
between volume and slice rendering, as well as for rotating and slicing 
through the 3D data.

requirements
We’ll use PyOpenGL, a popular Python binding for OpenGL, for render-
ing. We’ll also use numpy arrays to represent 3D coordinates and transfor-
mation matrices. 

an overview of the Project code
You’ll begin by generating a 3D texture from the volumetric data read 
in from the file. Next you’ll look at a color cube technique for generat-
ing rays from the eye that point into the volume, which is a key concept in 

BaCk-faCe Cul l ing

In OpenGL, when you draw a primitive like a quad, the order in which you 
specify the vertices is important . By default, OpenGL assumes an ordering of 
GL_CCW, or counterclockwise . For a primitive with counterclockwise ordering, 
the normal vector will point “out” of the polygon . This becomes relevant when 
you try to draw geometry with closed areas, such as a cube . To optimize your 
rendering, you cannot draw invisible sides by turning on OpenGL back-face 
culling to compute the dot product of your view direction vector with the normal 
vector of the polygon . For back-facing polygons, the dot product will be nega-
tive, and those faces can be dropped . OpenGL also provides an easy way to 
do the inverse—cull the front-faces, which is what you use in your algorithm .



Volume Rendering   197

implementing the volume ray casting algorithm. You’ll look at how to define 
the cube geometry as well as how to draw the back- and front-faces of this 
cube. You’ll then explore the volume ray casting algorithm and the associ-
ated vertex and fragment shaders. Finally, you’ll learn how to implement 2D 
slicing of the volumetric data.

This project has seven Python files:

glutils.py Contains the utility methods for OpenGL shaders, transfor-
mations, and so on

makedata.py Contains utility methods for creating volumetric data 
for testing

raycast.py Implements the RayCastRender class for ray casting

raycube.py Implements the RayCube class for use in RayCastRender

slicerender.py Implements the SliceRender class for 2D slicing of volu-
metric data

volreader.py Contains the utility method to read volumetric data into 
the OpenGL 3D texture

volrender.py Contains the main methods that create the GLFW win-
dow and the renderers

We’ll cover all but two of these files in this chapter. The makedata.py 
file lives with the other project files for this chapter at https://github.com/ 
electronut/pp/tree/master/volrender/. The glutils.py file can be downloaded 
from https://github.com/electronut/pp/tree/master/common/. 

generating a 3d texture
The first step is to read the volumetric data from a folder containing 
images, as shown in the following code. To see the complete volreader.py 
code, skip ahead to “The Complete 3D Texture Code” on page 199.

def loadVolume(dirName):
    """read volume from directory as a 3D texture"""
    # list images in directory

u     files = sorted(os.listdir(dirName))
    print('loading images from: %s' % dirName)
    imgDataList = []
    count = 0
    width, height = 0, 0
    for file in files:

v         file_path = os.path.abspath(os.path.join(dirName, file))
        try:
            # read image

w             img = Image.open(file_path)
            imgData = np.array(img.getdata(), np.uint8)

            # check if all images are of the same size
x             if count is 0:

                width, height = img.size[0], img.size[1] 

https://github.com/�electronut/pp/tree/master/volrender/
https://github.com/�electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/common/
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                imgDataList.append(imgData)
            else:

y                 if (width, height) == (img.size[0], img.size[1]):
                    imgDataList.append(imgData)
            else:
                print('mismatch')
                raise RunTimeError("image size mismatch")
            count += 1 
            #print img.size
        except:
            # skip
            print('Invalid image: %s' % file_path)

    # load image data into single array
    depth = count

z     data = np.concatenate(imgDataList)
    print('volume data dims: %d %d %d' % (width, height, depth))

    # load data into 3D texture
{     texture = glGenTextures(1)

    glPixelStorei(GL_UNPACK_ALIGNMENT, 1)
    glBindTexture(GL_TEXTURE_3D, texture)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

|     glTexImage3D(GL_TEXTURE_3D, 0, GL_RED, 
                 width, height, depth, 0, 
                 GL_RED, GL_UNSIGNED_BYTE, data)
    # return texture

}     return (texture, width, height, depth)

The loadVolume() method first lists the files in the given directory using 
the listdir() method from the os module u; then you load the image 
files themselves. At v, the filename is appended to the directory using 
os.path.abspath() and os.path.join(), eliminating the need to deal with 
relative file paths and operating system (OS)–specific path conventions. 
(You often see this useful idiom in Python code that traverses files and 
directories.) 

At w, you use the Image class from Python Imaging Library (PIL) to load 
the image into an 8-bit numpy array. If the file specified is not an image or 
if the image fails to load, an exception is thrown, and you catch it to print 
an error. 

Because you are loading these image slices into a 3D texture, you need 
to ensure they all have the same dimensions (width × height), which you 
confirm at x and y. You store the image dimensions for the first image 
and compare them against new incoming images. Once all the images are 
loaded into individual arrays, create the final array containing the 3D data 
by joining these arrays using the concatenate() method from numpy z.

At { and in the lines that follow, you create an OpenGL texture and set 
parameters for filtering and unpacking. Then, at |, load the 3D data array 
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into the OpenGL texture. The format used here is GL_RED, and the data for-
mat is GL_UNSIGNED_BYTE because you have only one 8-bit value associated with 
each pixel in the data.

Finally, at }, you return the OpenGL texture ID and the dimensions of 
the 3D texture.

the complete 3d texture code
Here is the full code listing. You can also find the volreader.py file at https://
github.com/electronut/pp/tree/master/volrender/.

import os
import numpy as np
from PIL import Image

import OpenGL
from OpenGL.GL import *

from scipy import misc

def loadVolume(dirName):
    """read volume from directory as a 3D texture"""
    # list images in directory
    files = sorted(os.listdir(dirName))
    print('loading images from: %s' % dirName)
    imgDataList = []
    count = 0
    width, height = 0, 0
    for file in files:
        file_path = os.path.abspath(os.path.join(dirName, file))
        try:
            # read image
            img = Image.open(file_path)
            imgData = np.array(img.getdata(), np.uint8)

            # check if all are of the same size
            if count is 0:
                width, height = img.size[0], img.size[1] 
                imgDataList.append(imgData)
            else:
                if (width, height) == (img.size[0], img.size[1]):
                    imgDataList.append(imgData)
                else:
                    print('mismatch')
                    raise RunTimeError("image size mismatch")
            count += 1
            #print img.size            
        except:
            # skip
            print('Invalid image: %s' % file_path)

    # load image data into single array
    depth = count

https://github.com/electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/volrender/
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    data = np.concatenate(imgDataList)
    print('volume data dims: %d %d %d' % (width, height, depth))

    # load data into 3D texture
    texture = glGenTextures(1)
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1)
    glBindTexture(GL_TEXTURE_3D, texture)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
    glTexImage3D(GL_TEXTURE_3D, 0, GL_RED, 
                 width, height, depth, 0, 
                 GL_RED, GL_UNSIGNED_BYTE, data)
    #return texture
    return (texture, width, height, depth)

# load texture
def loadTexture(filename):
    img = Image.open(filename)
    img_data = np.array(list(img.getdata()), 'B')
    texture = glGenTextures(1)
    glPixelStorei(GL_UNPACK_ALIGNMENT,1)
    glBindTexture(GL_TEXTURE_2D, texture)
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img.size[0], img.size[1], 
                 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data)
    return texture

generating rays
The code for generating the rays is encapsulated in a class called RayCube. 
This class is responsible for drawing the color cube and has methods to draw 
the back-faces of the cube to an FBO or texture and to draw the front-faces 
of the cube to the screen. To see the complete raycube.py code, skip ahead to 
“The Complete Ray Generation Code” on page 206.

First, let’s define the shaders used by this class:

u strVS = """
#version 330 core

layout(location = 1) in vec3 cubePos;
layout(location = 2) in vec3 cubeCol;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
out vec4 vColor;
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void main()
{
    // set back-face color
    vColor = vec4(cubeCol.rgb, 1.0); 

    // transformed position
    vec4 newPos = vec4(cubePos.xyz, 1.0);

    // set position
    gl_Position = uPMatrix * uMVMatrix * newPos; 

}
"""

v strFS = """
#version 330 core

in vec4 vColor;
out vec4 fragColor;

void main()
{
    fragColor = vColor;
}
"""

At u, you define the vertex shader used by the RayCube class. This shader 
has two input attributes, cubePos and cubeCol, which are used to access the 
position and color values of the vertices, respectively. The modelview and 
projection matrices are passed in with the uniform variables uMVMatrix and 
pMatrix, respectively. The vColor variable is declared as output because it 
needs to be passed on to the fragment shader, where it will be interpolated. 
The fragment shader implemented at v sets the fragment color to the (inter-
polated) value of the incoming vColor set in the vertex shader.

Defining the Color Cube Geometry
Now let’s look at the geometry of the color cube, defined in the RayCube 
class:

        # cube vertices
u         vertices = numpy.array([

                0.0, 0.0, 0.0, 
                1.0, 0.0, 0.0, 
                1.0, 1.0, 0.0, 
                0.0, 1.0, 0.0, 
                0.0, 0.0, 1.0,
                1.0, 0.0, 1.0, 
                1.0, 1.0, 1.0, 
                0.0, 1.0, 1.0 
                ], numpy.float32)
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        # cube colors
v         colors = numpy.array([

                0.0, 0.0, 0.0, 
                1.0, 0.0, 0.0,
                1.0, 1.0, 0.0, 
                0.0, 1.0, 0.0,
                0.0, 0.0, 1.0,
                1.0, 0.0, 1.0, 
                1.0, 1.0, 1.0, 
                0.0, 1.0, 1.0 
                ], numpy.float32)

        # individual triangles
w         indices = numpy.array([

                4, 5, 7,
                7, 5, 6,
                5, 1, 6,
                6, 1, 2,
                1, 0, 2,
                2, 0, 3,
                0, 4, 3,
                3, 4, 7,
                6, 2, 7,
                7, 2, 3,
                4, 0, 5,
                5, 0, 1
                ], numpy.int16)

The shaders are compiled, and the program object is created in the 
RayCube constructor. The cube geometry is defined at u, and the colors are 
defined at v. 

The color cube has six faces, each of which can each be drawn as two 
triangles for a total of 6×6, or 36, vertices. But rather than specify all 36 ver-
tices, you specify the cube’s eight vertices and then define the triangles 
using an indices array, as shown at w and illustrated in Figure 11-5. 
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Figure 11-5: Using indexing, a cube can  
be represented as a collection of triangles,  
with each face composed of two triangles.
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Next, you need to put the vertex information into buffers.

        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)

        # vertex buffer
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertices), vertices, GL_STATIC_DRAW)

        # vertex buffer – cube vertex colors
        self.colorBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.colorBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(colors), colors, GL_STATIC_DRAW)

        # index buffer
        self.indexBuffer = glGenBuffers(1)

u         glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.indexBuffer);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, 2*len(indices), indices, 
                     GL_STATIC_DRAW)

As with previous projects, you create and bind to a Vertex Array Object 
(VAO) and then define the buffers it manages. One difference here is that 
at u, the indices array is given the designation GL_ELEMENT_ARRAY_BUFFER, which 
means the elements in its buffer will be used to index and access the data in 
the color and vertex buffers.

Creating the Frame Buffer Object
Now let’s jump to the method that creates the frame buffer object, where 
you’ll direct your rendering.

    def initFBO(self): 
        # create frame buffer object
        self.fboHandle = glGenFramebuffers(1)
        # create texture
        self.texHandle = glGenTextures(1) 
        # create depth buffer
        self.depthHandle = glGenRenderbuffers(1)

        # bind
        glBindFramebuffer(GL_FRAMEBUFFER, self.fboHandle)

        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_2D, self.texHandle)

        # set parameters to draw the image at different sizes
u         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) 

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) 



204   Chapter 11

        # set up texture
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, self.width, self.height, 
                     0, GL_RGBA, GL_UNSIGNED_BYTE, None)

        # bind texture to FBO
v         glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 

                               GL_TEXTURE_2D, self.texHandle, 0)

        # bind
w         glBindRenderbuffer(GL_RENDERBUFFER, self.depthHandle)

        glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 
                              self.width, self.height)

        # bind depth buffer to FBO
        glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 
                                  GL_RENDERBUFFER, self.depthHandle)

        # check status
x         status = glCheckFramebufferStatus(GL_FRAMEBUFFER)

        if status == GL_FRAMEBUFFER_COMPLETE:
            pass
            #print "fbo %d complete" % self.fboHandle
        elif status == GL_FRAMEBUFFER_UNSUPPORTED:
            print "fbo %d unsupported" % self.fboHandle
        else:
            print "fbo %d Error" % self.fboHandle

Here you create a frame buffer object, a 2D texture, and a render buffer 
object; then, at u, you set up the texture parameters. The texture is bound 
to the frame buffer at v; at w and in the lines that follow, the render buffer 
sets up a 24-bit depth buffer and is attached to the frame buffer. At x, you 
check the status of the frame buffers and print a status message if something 
goes wrong. Now, as long as the frame buffer and render buffer are bound 
correctly, all of your rendering will go into the texture. 

Rendering the Back-Faces of the Cube
Here is the code for rendering the back-faces of the color cube:

    def renderBackFace(self, pMatrix, mvMatrix):
        """renders back-face of ray-cube to a texture and returns it"""
        # render to FBO

u         glBindFramebuffer(GL_FRAMEBUFFER, self.fboHandle)
        # set active texture
        glActiveTexture(GL_TEXTURE0)
        # bind to FBO texture
        glBindTexture(GL_TEXTURE_2D, self.texHandle)

        # render cube with face culling enabled
v         self.renderCube(pMatrix, mvMatrix, self.program, True)

        # unbind texture
w         glBindTexture(GL_TEXTURE_2D, 0)
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        glBindFramebuffer(GL_FRAMEBUFFER, 0)
        glBindRenderbuffer(GL_RENDERBUFFER, 0)

        # return texture ID
x         return self.texHandle

At u, bind the FBO, set the active texture unit, and bind to the texture 
handle so that you can render to the FBO. At v, you call the renderCube() 
method in RayCube, with a face-culling flag as an argument to allow you to 
draw either the front-face or the back-face of the cube using the same code. 
Set the flag to True to make the back-faces appear in the FBO texture. 

At w, you make the necessary calls to unbind from the FBO so that 
other rendering code is unaffected. The FBO texture ID is returned at x 
for use in the next stage of your algorithm.

Rendering the Front-Faces of the Cube
The following code is used to draw the front-faces of the color cube during 
the second rendering pass of the ray casting algorithm. It simply calls the 
renderCube() method discussed in the previous section, with the face-culling 
flag set to False.

    def renderFrontFace(self, pMatrix, mvMatrix, program):
        """render front-face of ray-cube"""
        # no face culling
        self.renderCube(pMatrix, mvMatrix, program, False)

Rendering the Whole Cube
Now let’s look at the renderCube() method, which draws the color cube dis-
cussed previously:

    def renderCube(self, pMatrix, mvMatrix, program, cullFace):
        """renderCube uses face culling if flag set"""

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        # set shader program
        glUseProgram(program)

        # set projection matrix
        glUniformMatrix4fv(glGetUniformLocation(program, b'uPMatrix'), 
                           1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(glGetUniformLocation(program, b'uMVMatrix'), 
                           1, GL_FALSE, mvMatrix)

        # enable face culling
        glDisable(GL_CULL_FACE)



206   Chapter 11

u         if cullFace:
            glFrontFace(GL_CCW)
            glCullFace(GL_FRONT)
            glEnable(GL_CULL_FACE)

        # bind VAO
        glBindVertexArray(self.vao)

        # animated slice
v         glDrawElements(GL_TRIANGLES, self.nIndices, GL_UNSIGNED_SHORT, None)

        # unbind VAO
        glBindVertexArray(0)

        # reset cull face
        if cullFace:
            # disable face culling
            glDisable(GL_CULL_FACE)

As you can see in this listing, you clear the color and depth buffers and 
then select the shader program and set the transformation matrices. At u, 
you set a flag to control face culling, which determines whether the cube’s 
front-face or back-face is drawn. Also, you use glDrawElements() v because 
you’re using an index array to render the cube, rather than a vertex array.

The Resize Handler
Because the FBO is created for a particular window size, you need to  
re-create it when the window size changes. To do that, you create a resize 
handler for the RayCube class, as shown here:

u     def reshape(self, width, height):
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        # re-create FBO
        self.clearFBO()
        self.initFBO()

The reshape() function u is called when the OpenGL window is resized. 

the complete ray generation code
Here is the full code listing. You can also find the raycube.py file at https://
github.com/electronut/pp/tree/master/volrender/.

import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *

import numpy, math, sys 
import volreader, glutils

https://github.com/electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/volrender/
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strVS = """
#version 330 core

layout(location = 1) in vec3 cubePos;
layout(location = 2) in vec3 cubeCol;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
out vec4 vColor;

void main()
{
    // set back face color
    vColor = vec4(cubeCol.rgb, 1.0); 
    
    // transformed position
    vec4 newPos = vec4(cubePos.xyz, 1.0);
    
    // set position
    gl_Position = uPMatrix * uMVMatrix * newPos; 

}
"""
strFS = """
#version 330 core

in vec4 vColor;
out vec4 fragColor;

void main()
{
    fragColor = vColor;
}
"""

class RayCube:
    """class used to generate rays used in ray casting"""
    
    def __init__(self, width, height):
        """RayCube constructor"""

        # set dims
        self.width, self.height = width, height

        # create shader
        self.program = glutils.loadShaders(strVS, strFS)

        # cube vertices
        vertices = numpy.array([
                0.0, 0.0, 0.0, 
                1.0, 0.0, 0.0, 
                1.0, 1.0, 0.0, 
                0.0, 1.0, 0.0, 
                0.0, 0.0, 1.0,
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                1.0, 0.0, 1.0, 
                1.0, 1.0, 1.0, 
                0.0, 1.0, 1.0 
                ], numpy.float32)

        # cube colors
        colors = numpy.array([
                0.0, 0.0, 0.0, 
                1.0, 0.0, 0.0,
                1.0, 1.0, 0.0, 
                0.0, 1.0, 0.0,
                0.0, 0.0, 1.0,
                1.0, 0.0, 1.0, 
                1.0, 1.0, 1.0, 
                0.0, 1.0, 1.0 
                ], numpy.float32)

        # individual triangles
        indices = numpy.array([ 
                4, 5, 7, 
                7, 5, 6,
                5, 1, 6, 
                6, 1, 2, 
                1, 0, 2, 
                2, 0, 3,
                0, 4, 3, 
                3, 4, 7, 
                6, 2, 7, 
                7, 2, 3, 
                4, 0, 5, 
                5, 0, 1
                ], numpy.int16)
        
        self.nIndices = indices.size

        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)

        #vertex buffer
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertices), vertices, GL_STATIC_DRAW)
 
        # vertex buffer - cube vertex colors
        self.colorBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.colorBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(colors), colors, GL_STATIC_DRAW);
    
        # index buffer
        self.indexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.indexBuffer);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, 2*len(indices), indices, 
                     GL_STATIC_DRAW)
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        # enable attrs using the layout indices in shader
        aPosLoc = 1
        aColorLoc = 2

        # bind buffers:
        glEnableVertexAttribArray(1)
        glEnableVertexAttribArray(2)
    
        # vertex
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(aPosLoc, 3, GL_FLOAT, GL_FALSE, 0, None)

        # color
        glBindBuffer(GL_ARRAY_BUFFER, self.colorBuffer)
        glVertexAttribPointer(aColorLoc, 3, GL_FLOAT, GL_FALSE, 0, None)
        # index
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.indexBuffer)
        
        # unbind VAO
        glBindVertexArray(0)

        # FBO
        self.initFBO()

    def renderBackFace(self, pMatrix, mvMatrix):
        """renders back-face of ray-cube to a texture and returns it"""
        # render to FBO
        glBindFramebuffer(GL_FRAMEBUFFER, self.fboHandle)
        # set active texture
        glActiveTexture(GL_TEXTURE0)
        # bind to FBO texture
        glBindTexture(GL_TEXTURE_2D, self.texHandle)

        # render cube with face culling enabled
        self.renderCube(pMatrix, mvMatrix, self.program, True)
        
        # unbind texture
        glBindTexture(GL_TEXTURE_2D, 0)
        glBindFramebuffer(GL_FRAMEBUFFER, 0)
        glBindRenderbuffer(GL_RENDERBUFFER, 0)

        # return texture ID 
        return self.texHandle

    def renderFrontFace(self, pMatrix, mvMatrix, program):
        """render front face of ray-cube"""
        # no face culling
        self.renderCube(pMatrix, mvMatrix, program, False)

    def renderCube(self, pMatrix, mvMatrix, program, cullFace):
        """render cube use face culling if flag set"""
        
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
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        # set shader program
        glUseProgram(program)
        
        # set projection matrix
        glUniformMatrix4fv(glGetUniformLocation(program, b'uPMatrix'), 
                           1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(glGetUniformLocation(program, b'uMVMatrix'), 
                           1, GL_FALSE, mvMatrix)
 
        # enable face culling
        glDisable(GL_CULL_FACE)
        if cullFace:
            glFrontFace(GL_CCW)
            glCullFace(GL_FRONT)
            glEnable(GL_CULL_FACE)

        # bind VAO
        glBindVertexArray(self.vao)

        # animated slice
        glDrawElements(GL_TRIANGLES, self.nIndices, GL_UNSIGNED_SHORT, None)

        # unbind VAO
        glBindVertexArray(0)

        # reset cull face
        if cullFace:
            # disable face culling
            glDisable(GL_CULL_FACE)

    
    def reshape(self, width, height):
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        # re-create FBO
        self.clearFBO()
        self.initFBO()
        
    def initFBO(self): 
        # create frame buffer object
        self.fboHandle = glGenFramebuffers(1)
        # create texture
        self.texHandle = glGenTextures(1)    
        # create depth buffer
        self.depthHandle = glGenRenderbuffers(1)

        # bind
        glBindFramebuffer(GL_FRAMEBUFFER, self.fboHandle)
    
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_2D, self.texHandle)
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        # set parameters to draw the image at different sizes
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) 
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)
        
        # set up texture
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, self.width, self.height, 
                     0, GL_RGBA, GL_UNSIGNED_BYTE, None)
        
        # bind texture to FBO
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 
                               GL_TEXTURE_2D, self.texHandle, 0)
        
        # bind
        glBindRenderbuffer(GL_RENDERBUFFER, self.depthHandle)
        glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 
                              self.width, self.height)
    
        # bind depth buffer to FBO
        glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 
                                  GL_RENDERBUFFER, self.depthHandle)

        # check status
        status = glCheckFramebufferStatus(GL_FRAMEBUFFER)
        if status == GL_FRAMEBUFFER_COMPLETE:
            pass
            #print "fbo %d complete" % self.fboHandle
        elif status == GL_FRAMEBUFFER_UNSUPPORTED:
            print("fbo %d unsupported" % self.fboHandle)
        else:
            print("fbo %d Error" % self.fboHandle)
            
        glBindTexture(GL_TEXTURE_2D, 0)
        glBindFramebuffer(GL_FRAMEBUFFER, 0)
        glBindRenderbuffer(GL_RENDERBUFFER, 0)
        return

    def clearFBO(self):
        """clears old FBO"""
        # delete FBO
        if glIsFramebuffer(self.fboHandle):
            glDeleteFramebuffers(int(self.fboHandle))
    
        # delete texture
        if glIsTexture(self.texHandle):
            glDeleteTextures(int(self.texHandle))
            

    def close(self):
        """call this to free up OpenGL resources"""
        glBindTexture(GL_TEXTURE_2D, 0)
        glBindFramebuffer(GL_FRAMEBUFFER, 0)
        glBindRenderbuffer(GL_RENDERBUFFER, 0)
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        # delete FBO
        if glIsFramebuffer(self.fboHandle):
            glDeleteFramebuffers(int(self.fboHandle))
    
        # delete texture
        if glIsTexture(self.texHandle):
            glDeleteTextures(int(self.texHandle))

        # delete render buffer
        """
        if glIsRenderbuffer(self.depthHandle):
            glDeleteRenderbuffers(1, int(self.depthHandle))
            """
        # delete buffers
        """
        glDeleteBuffers(1, self._vertexBuffer)
        glDeleteBuffers(1, &_indexBuffer)
        glDeleteBuffers(1, &_colorBuffer)
        """

volume ray casting
Next, implement the ray casting algorithm in the RayCastRender class. The 
core of the algorithm happens inside the fragment shader used by this 
class, which also uses the RayCube class to help generate the rays. To see the 
complete raycast.py code, skip ahead to “The Complete Volume Ray Casting 
Code” on page 216.

Begin by creating a RayCube object and loading the shaders in its 
constructor.

    def __init__(self, width, height, volume):
        """RayCastRender construction"""

        # create RayCube object
u         self.raycube = raycube.RayCube(width, height)

        # set dimensions
        self.width = width
        self.height = height
        self.aspect = width/float(height)

        # create shader
v         self.program = glutils.loadShaders(strVS, strFS)

        # texture
w         self.texVolume, self.Nx, self.Ny, self.Nz = volume

        # initialize camera
x         self.camera = Camera()

The constructor creates an object of type RayCube at u, which is used 
to generate rays. At v, load the shaders used by the ray casting; then at w, 
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set the OpenGL 3D texture and dimensions, which are passed in as a tuple 
into the RayCastRender constructor. At x, you create a Camera class that you’ll 
use to set up the OpenGL perspective transformation for the 3D rendering. 
(This class is basically the same as the one used in Chapter 10.)

Here is the rendering method for RayCastRender:

    def draw(self):

        # build projection matrix
u         pMatrix = glutils.perspective(45.0, self.aspect, 0.1, 100.0)

        # modelview matrix
v         mvMatrix = glutils.lookAt(self.camera.eye, self.camera.center, 

                                  self.camera.up)

        # render

        # generate ray-cube back-face texture
w         texture = self.raycube.renderBackFace(pMatrix, mvMatrix)

        # set shader program
x         glUseProgram(self.program)

        # set window dimensions
        glUniform2f(glGetUniformLocation(self.program, b"uWinDims"),
                    float(self.width), float(self.height))

        # bind to texture unit 0, which represents back-faces of cube
y         glActiveTexture(GL_TEXTURE0)

        glBindTexture(GL_TEXTURE_2D, texture)
        glUniform1i(glGetUniformLocation(self.program, b"texBackFaces"), 0)

        # texture unit 1: 3D volume texture
z         glActiveTexture(GL_TEXTURE1)

        glBindTexture(GL_TEXTURE_3D, self.texVolume)
        glUniform1i(glGetUniformLocation(self.program, b"texVolume"), 1)

        # draw front-face of cubes
{         self.raycube.renderFrontFace(pMatrix, mvMatrix, self.program)

At u, you set up a perspective projection matrix for the rendering, 
using the glutils.perspective() utility method. Then, you set the current 
camera parameters into the glutils.lookAt() method at v. At w, the first 
pass of the rendering is done, which uses the renderBackFace() method in 
RayCube to draw the back-faces of the color cube into a texture. (This method 
also returns the ID of the generated texture.) 

At x, enable the shaders for the ray casting algorithm; then at y, set 
up the texture returned at w to be used in the shader program as texture 
unit 0. At z, you set up the 3D texture created from the volumetric data 
you read in as texture unit 1 so that now both textures will be available 
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from your shaders. Finally, at {, you render the front-faces of the cube 
using the renderFrontFace() method in RayCube. When this code is executed, 
the shaders for RayCastRender will act on the vertices and fragments.

The Vertex Shader
Now you come to the shaders used by RayCastRender. Let’s look at the vertex 
shader first:

#version 330 core

u layout(location = 1) in vec3 cubePos;
layout(location = 2) in vec3 cubeCol;

v uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

w out vec4 vColor;

void main()
{ 
    // set position

x     gl_Position = uPMatrix * uMVMatrix * vec4(cubePos.xyz, 1.0);

    // set color
y     vColor = vec4(cubeCol.rgb, 1.0);

}

Starting at u, you set the input variables of position and color. The 
layout uses the same indices as defined in the RayCube vertex shader because 
RayCastRender uses the VBO defined in that class to draw the geometry, and 
the locations in the shaders have to match. At v and in the line that fol-
lows, define the input transformation matrices. Then, set a color value as 
the shader output at w. The usual transformation that computes the built-
in gl_Position output is included at x, and at y, you set the output as the 
current color of the cube vertex, which will be interpolated across vertices 
to give you the correct color in the fragment shader.

The Fragment Shader
The fragment shader is the star of the show. It implements the core of the 
ray casting algorithm.

#version 330 core

in vec4 vColor;

uniform sampler2D texBackFaces;
uniform sampler3D texVolume;
uniform vec2 uWinDims;

out vec4 fragColor;
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void main()
{
    // start of ray

u     vec3 start = vColor.rgb;

    // calculate texture coordinates at fragment, 
    // which is a fraction of window coordinates

v     vec2 texc = gl_FragCoord.xy/uWinDims.xy;

    // get end of ray by looking up back-face color
w     vec3 end = texture(texBackFaces, texc).rgb;

    // calculate ray direction
x     vec3 dir = end – start;

    // normalized ray direction
    vec3 norm_dir = normalize(dir);

    // the length from front to back is calculated and 
    // used to terminate the ray
    float len = length(dir.xyz);

    // ray step size
    float stepSize = 0.01;

    // x-ray projection
    vec4 dst = vec4(0.0);

    // step through the ray
y     for(float t = 0.0; t < len; t += stepSize) {

        // set position to end point of ray
z         vec3 samplePos = start + t*norm_dir;

        // get texture value at position
{         float val = texture(texVolume, samplePos).r;

        vec4 src = vec4(val);

        // set opacity
|         src.a *= 0.1; 

        src.rgb *= src.a;

        // blend with previous value
}         dst = (1.0 - dst.a)*src + dst;

        // exit loop when alpha exceeds threshold
~         if(dst.a >= 0.95)

            break;
    }

    // set fragment color
    fragColor = dst; 
}
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The input to the fragment shader is the cube vertex color. The frag-
ment shader also has access to the 2D texture generated by rendering the 
color cube, the 3D texture containing the data, and the dimensions of the 
OpenGL window. 

While the fragment shader executes, you send in the front-faces of the 
cube, so by looking up the incoming color value at u, you get the start-
ing point of the ray that goes into this cube. (Recall the discussion in 
“Generating Rays” on page 193 about the connection between the colors 
in the cube and ray directions.) 

At v, you calculate the texture coordinate of the incoming fragment 
on the screen. Divide the location of the fragment in window coordinates 
by the window dimensions to map in the range [0, 1]. The ending point of 
the ray is obtained at w by looking up the back-face color of the cube using 
this texture coordinate. 

At x, you calculate the ray direction and then calculate the normalized 
direction and length of this ray, which will be useful in the ray casting com-
putation. Then, at y, you loop through the volume using the ray’s starting 
point and direction until it hits the ray’s endpoint. Compute the ray’s cur-
rent position inside the data volume at z, and at {, look up the data value 
at this point. 

The blending equation, which gives you the x-ray effect, is performed 
at | and }. You combine the dst value with the current value of the inten-
sity (which is attenuated using the alpha value), and the process continues 
along the ray. (The alpha value keeps increasing.) 

At ~, you check this alpha value until it equals the maximum thresh-
old of 0.95 and then exit this loop. The end result is a sort of average opacity 
through the volume at each pixel, which produces a “see-through” or x-ray 
effect. (Try varying the threshold and alpha attenuation to produce differ-
ent effects.) 

the complete volume ray casting code
Here is the full code listing. You can also find the raycast.py file at https://
github.com/electronut/pp/tree/master/volrender/.

import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *

import numpy as np
import math, sys 

import raycube, glutils, volreader

strVS = """
#version 330 core

layout(location = 1) in vec3 cubePos;
layout(location = 2) in vec3 cubeCol;

https://github.com/electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/volrender/
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uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

out vec4 vColor;

void main()
{    
    // set position
    gl_Position = uPMatrix * uMVMatrix * vec4(cubePos.xyz, 1.0);

    // set color
    vColor = vec4(cubeCol.rgb, 1.0);
}
"""
strFS = """
#version 330 core

in vec4 vColor;

uniform sampler2D texBackFaces;
uniform sampler3D texVolume;
uniform vec2 uWinDims;

out vec4 fragColor;

void main()
{
    // start of ray
    vec3 start = vColor.rgb;

    // calculate texture coords at fragment, 
    // which is a fraction of window coords
    vec2 texc = gl_FragCoord.xy/uWinDims.xy;

    // get end of ray by looking up back-face color
    vec3 end = texture(texBackFaces, texc).rgb;

    // calculate ray direction
    vec3 dir = end - start;

    // normalized ray direction
    vec3 norm_dir = normalize(dir);

    // the length from front to back is calculated and 
    // used to terminate the ray
    float len = length(dir.xyz);

    // ray step size
    float stepSize = 0.01;

    // x-ray projection
    vec4 dst = vec4(0.0);
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    // step through the ray
    for(float t = 0.0; t < len; t += stepSize) {

        // set position to end point of ray
        vec3 samplePos = start + t*norm_dir;

        // get texture value at position
        float val = texture(texVolume, samplePos).r;
        vec4 src = vec4(val);

        // set opacity
        src.a *= 0.1; 
        src.rgb *= src.a;

        // blend with previous value
        dst = (1.0 - dst.a)*src + dst;  
            
        // exit loop when alpha exceeds threshold
        if(dst.a >= 0.95)
            break;
    }
        
    // set fragment color
    fragColor =  dst;   
}
"""

class Camera:
    """helper class for viewing"""
    def __init__(self):
        self.r = 1.5
        self.theta = 0
        self.center = [0.5, 0.5, 0.5]
        self.eye = [0.5 + self.r, 0.5, 0.5]
        self.up = [0.0, 0.0, 1.0]

    def rotate(self, clockWise):
        """rotate eye by one step"""
        if clockWise:
            self.theta = (self.theta + 5) % 360
        else:
            self.theta = (self.theta - 5) % 360
        # recalculate eye
        self.eye = [0.5 + self.r*math.cos(math.radians(self.theta)), 
                    0.5 + self.r*math.sin(math.radians(self.theta)), 
                    0.5]

class RayCastRender:
    """class that does Ray Casting"""
    
    def __init__(self, width, height, volume):
        """RayCastRender constr"""
        
        # create RayCube object
        self.raycube = raycube.RayCube(width, height)
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        # set dimensions
        self.width = width
        self.height = height
        self.aspect = width/float(height)

        # create shader
        self.program = glutils.loadShaders(strVS, strFS)
        # texture
        self.texVolume, self.Nx, self.Ny, self.Nz = volume
        
        # initialize camera
        self.camera = Camera()
        
    def draw(self):

        # build projection matrix
        pMatrix = glutils.perspective(45.0, self.aspect, 0.1, 100.0)
       
        # modelview matrix
        mvMatrix = glutils.lookAt(self.camera.eye, self.camera.center, 
                                  self.camera.up)
        # render
        
        # generate ray-cube back-face texture
        texture = self.raycube.renderBackFace(pMatrix, mvMatrix)
        
        # set shader program
        glUseProgram(self.program)

        # set window dimensions
        glUniform2f(glGetUniformLocation(self.program, b"uWinDims"),
                    float(self.width), float(self.height))

        # texture unit 0, which represents back-faces of cube
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_2D, texture)
        glUniform1i(glGetUniformLocation(self.program, b"texBackFaces"), 0)
        
        # texture unit 1: 3D volume texture
        glActiveTexture(GL_TEXTURE1)
        glBindTexture(GL_TEXTURE_3D, self.texVolume)
        glUniform1i(glGetUniformLocation(self.program, b"texVolume"), 1)

        # draw front face of cubes
        self.raycube.renderFrontFace(pMatrix, mvMatrix, self.program)
                
        #self.render(pMatrix, mvMatrix)

    def keyPressed(self, key):
        if key == 'l':
            self.camera.rotate(True)
        elif key == 'r':
            self.camera.rotate(False)
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    def reshape(self, width, height):
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        self.raycube.reshape(width, height)

    def close(self):
        self.raycube.close()

2d slicing
In addition to showing the 3D view of the volumetric data, you also want to 
show 2D slices of the data in the x, y, and z directions onscreen. This code 
is encapsulated in a class called SliceRender, which creates 2D volumetric 
slices. To see the complete slicerender.py code, skip ahead to “The Complete 
2D Slicing Code” on page 224. 

Here is the initialization code that sets up the geometry for the slices:

        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)

        # define quad vertices 
u         vertexData = numpy.array([ 0.0, 1.0, 0.0, 

                                   0.0, 0.0, 0.0, 
                                   1.0, 1.0, 0.0,
                                   1.0, 0.0, 0.0], numpy.float32)

        # vertex buffer
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)
        # enable arrays
        glEnableVertexAttribArray(self.vertIndex)
        # set buffers 
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0, None)

        # unbind VAO
        glBindVertexArray(0)

This code sets up a VAO to manage the VBO, as in earlier examples. 
The geometry defined at u is a square in the xy plane. (The vertex order 
is that of the GL_TRIANGLE_STRIP, introduced in Chapter 9.) So whether or 
not you are showing the slices perpendicular to x, y, or z, you use the same 
geometry. What changes between these cases is the data plane that you 
pick to display from within the 3D texture. I’ll return to this when I discuss 
the vertex shader.
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Next, render the 2D slices using SliceRender:

    def draw(self):
        # clear buffers
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
        # build projection matrix

u         pMatrix = glutils.ortho(-0.6, 0.6, -0.6, 0.6, 0.1, 100.0)
        # modelview matrix

v         mvMatrix = numpy.array([1.0, 0.0, 0.0, 0.0, 
                                0.0, 1.0, 0.0, 0.0, 
                                0.0, 0.0, 1.0, 0.0, 
                                -0.5, -0.5, -1.0, 1.0], numpy.float32) 
        # use shader
        glUseProgram(self.program)

        # set projection matrix
        glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix)

        # set current slice fraction
w         glUniform1f(glGetUniformLocation(self.program, b"uSliceFrac"), 

                    float(self.currSliceIndex)/float(self.currSliceMax))
        # set current slice mode

x         glUniform1i(glGetUniformLocation(self.program, b"uSliceMode"), 
                    self.mode)

        # enable texture
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_3D, self.texture)
        glUniform1i(glGetUniformLocation(self.program, b"tex"), 0)

        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)
        # unbind VAO
        glBindVertexArray(0)

Each 2D slice is a square, which you build up using an OpenGL triangle 
strip primitive. This code goes through the render setup for the triangle 
strip. Note that you implement the orthographic projection using the 
glutils.ortho() method. At u, you set up a projection that adds 0.1 buffer 
around the unit square representing the slice. When you draw something 
with OpenGL, the default view (without any transformation applied) puts 
the eye at (0, 0, 0) and looking down the z-axis with the y-axis pointing up. 
At v, you apply the translation (–0.5, –0.5, –1.0) to your geometry to cen-
ter it around the z-axis. You set the current slice fraction at w (where, for 
example, the 10th slice out of 100 would be 0.1), set the slice mode at x (to 
view the slices in the x, y, or z direction, as represented by the integers 0, 
1, and 2, respectively), and set both values to the shaders.
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The Vertex Shader
Now let’s look at the vertex shader for SliceRender:

# version 330 core

in vec3 aVert;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform float uSliceFrac;
uniform int uSliceMode;

out vec3 texcoord;

void main() {

    // x slice
    if (uSliceMode == 0) {

u         texcoord = vec3(uSliceFrac, aVert.x, 1.0-aVert.y);
    }
    // y slice
    else if (uSliceMode == 1) {

v         texcoord = vec3(aVert.x, uSliceFrac, 1.0-aVert.y);
    }
    // z slice
    else {

w         texcoord = vec3(aVert.x, 1.0-aVert.y, uSliceFrac);
    }

    // calculate transformed vertex
    gl_Position = uPMatrix * uMVMatrix * vec4(aVert, 1.0); 
}

The vertex shader takes the triangle strip vertex array as input and sets 
a texture coordinate as output. The current slice fraction and slice mode 
are passed in as uniform variables. 

At u, you calculate the texture coordinates for the x slice. Because you 
are slicing perpendicular to the x direction, you want a slice parallel to the 
yz plane. The 3D vertices coming in to the vertex shader also double as 
the 3D texture coordinates because they are in the range [0, 1], so the tex-
ture coordinates are given as (f, Vx, Vy), where f is the fraction of the slice 
number in the direction of the x-axis and where Vx and Vy are the vertex 
coordinates. Unfortunately, the resulting image will appear upside down 
because the OpenGL coordinate system has its origin at the bottom left, 
with the y direction pointing up; this is the reverse of what you want. To 
resolve this problem, you change the texture coordinate t to (1 – t) and use 
(f, Vx, 1 − Vy), as shown at u. At v and w, you use similar logic to compute 
the texture coordinates for the y and z direction slices.
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The Fragment Shader
Here is the fragment shader:

# version 330 core

u in vec3 texcoord;

v uniform sampler3D texture;

out vec4 fragColor;

void main() {
    // look up color in texture

w     vec4 col = texture(tex, texcoord);
x     fragColor = col.rrra;

}

At u, the fragment shader declares texcoord as input, which was set as 
output in the vertex shader. The texture sampler is declared as a uniform 
at v. At w, you look up the texture color using texcoord, and at x, you set 
fragColor as the output. (Because you read in your texture only as the red 
channel, you use col.rrra.)

A User Interface for 2D Slicing
Now you need a way for the user to slice through the data. Do this using the 
keyboard handler for SliceRender.

    def keyPressed(self, key):
        """keypress handler"""
        if key == 'x':

u             self.mode = SliceRender.XSLICE
            # reset slice index
            self.currSliceIndex = int(self.Nx/2)
            self.currSliceMax = self.Nx
        elif key == 'y':
            self.mode = SliceRender.YSLICE
            # reset slice index
            self.currSliceIndex = int(self.Ny/2)
            self.currSliceMax = self.Ny
        elif key == 'z':
            self.mode = SliceRender.ZSLICE
            # reset slice index
            self.currSliceIndex = int(self.Nz/2)
            self.currSliceMax = self.Nz
        elif key == 'l':

v             self.currSliceIndex = (self.currSliceIndex + 1) % self.currSliceMax
        elif key == 'r':
            self.currSliceIndex = (self.currSliceIndex - 1) % self.currSliceMax
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When the X, Y, or Z keys are pressed on the keyboard, SliceRender 
switches to the x, y, or z slice mode. You can see this in action at u for 
the x slice where you set the current slice index to the middle of the data 
and update the maximum slice number. When the left or right arrow keys 
on the keyboard are pressed, you page through the slices. At v, the slice 
index is incremented when the right arrow is pressed. The modulo opera-
tor (%) ensures that the index “rolls over” to 0 when you exceed the maxi-
mum value.

the complete 2d slicing code
Here is the full code listing. You can also find the slicerender.py file at https://
github.com/electronut/pp/tree/master/volrender/.

import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *
import numpy, math, sys 

import volreader, glutils

strVS = """
# version 330 core

in vec3 aVert;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform float uSliceFrac;
uniform int uSliceMode;

out vec3 texcoord;

void main() {

    // x slice
    if (uSliceMode == 0) {
        texcoord = vec3(uSliceFrac, aVert.x, 1.0-aVert.y);
    }
    // y slice
    else if (uSliceMode == 1) {
        texcoord = vec3(aVert.x, uSliceFrac, 1.0-aVert.y);
    }
    // z slice
    else {
        texcoord = vec3(aVert.x, 1.0-aVert.y, uSliceFrac);
    }

    // calculate transformed vertex
    gl_Position = uPMatrix * uMVMatrix * vec4(aVert, 1.0); 
}

https://github.com/electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/volrender/
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"""
strFS = """
# version 330 core

in vec3 texcoord;

uniform sampler3D tex;

out vec4 fragColor;

void main() {
    // look up color in texture
    vec4 col = texture(tex, texcoord);
    fragColor = col.rrra;
}

"""

class SliceRender:
    # slice modes
    XSLICE, YSLICE, ZSLICE = 0, 1, 2

    def __init__(self, width, height, volume):
        """SliceRender constructor"""
        self.width = width
        self.height = height
        self.aspect = width/float(height)

        # slice mode
        self.mode = SliceRender.ZSLICE

        # create shader
        self.program = glutils.loadShaders(strVS, strFS)

        glUseProgram(self.program)

        self.pMatrixUniform = glGetUniformLocation(self.program, b'uPMatrix')
        self.mvMatrixUniform = glGetUniformLocation(self.program, 
                                                  b"uMVMatrix")

        # attributes
        self.vertIndex = glGetAttribLocation(self.program, b"aVert")
 
        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)

        # define quad vertices 
        vertexData = numpy.array([ 0.0, 1.0, 0.0, 
                                   0.0, 0.0, 0.0, 
                                   1.0, 1.0, 0.0,
                                   1.0, 0.0, 0.0], numpy.float32)
        # vertex buffer
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
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        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, 
                     GL_STATIC_DRAW)
        # enable arrays
        glEnableVertexAttribArray(self.vertIndex)
        # set buffers 
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0, None)

        # unbind VAO
        glBindVertexArray(0)

        # load texture
        self.texture, self.Nx, self.Ny, self.Nz = volume

        # current slice index
        self.currSliceIndex = int(self.Nz/2);
        self.currSliceMax = self.Nz;

    def reshape(self, width, height):
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        
    def draw(self):
        # clear buffers
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
        # build projection matrix
        pMatrix = glutils.ortho(-0.6, 0.6, -0.6, 0.6, 0.1, 100.0)
        # modelview matrix
        mvMatrix = numpy.array([1.0, 0.0, 0.0, 0.0, 
                                0.0, 1.0, 0.0, 0.0, 
                                0.0, 0.0, 1.0, 0.0, 
                                -0.5, -0.5, -1.0, 1.0], numpy.float32)        
        # use shader
        glUseProgram(self.program)
        
        # set projection matrix
        glUniformMatrix4fv(self.pMatrixUniform, 1, GL_FALSE, pMatrix)

        # set modelview matrix
        glUniformMatrix4fv(self.mvMatrixUniform, 1, GL_FALSE, mvMatrix)

        # set current slice fraction
        glUniform1f(glGetUniformLocation(self.program, b"uSliceFrac"), 
                    float(self.currSliceIndex)/float(self.currSliceMax))
        # set current slice mode
        glUniform1i(glGetUniformLocation(self.program, b"uSliceMode"), 
                    self.mode)
        
        # enable texture
        glActiveTexture(GL_TEXTURE0)
        glBindTexture(GL_TEXTURE_3D, self.texture)
        glUniform1i(glGetUniformLocation(self.program, b"tex"), 0)
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        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)
        # unbind VAO
        glBindVertexArray(0)

    def keyPressed(self, key):
        """keypress handler"""
        if key == 'x':
            self.mode = SliceRender.XSLICE
            # reset slice index
            self.currSliceIndex = int(self.Nx/2)
            self.currSliceMax = self.Nx
        elif key == 'y':
            self.mode = SliceRender.YSLICE
            # reset slice index
            self.currSliceIndex = int(self.Ny/2)
            self.currSliceMax = self.Ny
        elif key == 'z':
            self.mode = SliceRender.ZSLICE
            # reset slice index
            self.currSliceIndex = int(self.Nz/2)
            self.currSliceMax = self.Nz
        elif key == 'l':
            self.currSliceIndex = (self.currSliceIndex + 1) % self.currSliceMax
        elif key == 'r':
            self.currSliceIndex = (self.currSliceIndex - 1) % self.currSliceMax
            
    def close(self):
        pass

Putting the code together
Let’s take a quick look at the main file in the project volrender.py. This file 
uses a class RenderWin, which creates and manages the GLFW OpenGL win-
dow. (I won’t cover this class in detail because it’s similar to the class used 
in Chapters 9 and 10.) To see the complete volrender.py code, skip ahead to 
“The Complete Main File Code” on page 228. 

In the initialization code for this class, you create the renderer as follows:

        # load volume data
u         self.volume = volreader.loadVolume(imageDir)

        # create renderer
v         self.renderer = RayCastRender(self.width, self.height, self.volume)

At u, you read the 3D data into an OpenGL texture. At v, you create 
an object of type RayCastRender to display the data.
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Pressing V on the keyboard toggles the code between volume and slice 
rendering. Here is the keyboard handler for RenderWindow:

    def onKeyboard(self, win, key, scancode, action, mods):
        # print 'keyboard: ', win, key, scancode, action, mods
        # ESC to quit
        if key is glfw.GLFW_KEY_ESCAPE:
            self.renderer.close()
            self.exitNow = True
        else:

u             if action is glfw.GLFW_PRESS or action is glfw.GLFW_REPEAT:
                if key == glfw.GLFW_KEY_V:
                    # toggle render mode

v                     if isinstance(self.renderer, RayCastRender):
                        self.renderer = SliceRender(self.width, self.height, 
                                                    self.volume)
                    else:
                        self.renderer = RayCastRender(self.width, self.height, 
                                                      self.volume)
                    # call reshape on renderer
                    self.renderer.reshape(self.width, self.height)
                else:
                    # send keypress to renderer

w                     keyDict = {glfw.GLFW_KEY_X: 'x', glfw.GLFW_KEY_Y: 'y', 
                               glfw.GLFW_KEY_Z: 'z', glfw.GLFW_KEY_LEFT: 'l', 
                               glfw.GLFW_KEY_RIGHT: 'r'}
                    try:
                        self.renderer.keyPressed(keyDict[key])
                    except:
                        pass

Pressing esc quits the program. Other keypresses (V, X, Y, Z, and so on) 
are handled at u (set so that it works whether you have just pressed the key 
down or if you are keeping it pressed). At v, if V is pressed, you toggle the 
renderer between volume and slice, using Python’s isinstance() method to 
identify the current class type. 

To handle keypress events other than esc, you use a dictionary w and 
pass the key pressed to the renderer’s keyPressed() handler. 

n o t e  I’m choosing not to pass in the glfw.KEY values directly and using a dictionary to con-
vert these to character values instead, because it’s good practice to reduce dependen-
cies in source files. Currently, the only file in this project that depends on GLFW is 
volrender.py. If you were to pass GLFW-specific types into other code, they would need 
to import and depend on the GLFW library, but if you were to switch to yet another 
OpenGL windowing toolkit, the code would become messy. 

the complete main file code
Here is the full code listing. You can also find the volrender.py file at https://
github.com/electronut/pp/tree/master/volrender/. 

https://github.com/electronut/pp/tree/master/volrender/
https://github.com/electronut/pp/tree/master/volrender/
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import sys, argparse, os
from slicerender import *
from raycast import *
import glfw

class RenderWin:
    """GLFW Rendering window class"""
    def __init__(self, imageDir):
        
        # save current working directory
        cwd = os.getcwd()

        # initialize glfw; this changes cwd
        glfw.glfwInit()
        
        # restore cwd
        os.chdir(cwd)

        # version hints
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, 3)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE)
        glfw.glfwWindowHint(glfw.GLFW_OPENGL_PROFILE,  
                            glfw.GLFW_OPENGL_CORE_PROFILE)

        # make a window
        self.width, self.height = 512, 512
        self.aspect = self.width/float(self.height)
        self.win = glfw.glfwCreateWindow(self.width, self.height, b"volrender")
        # make context current
        glfw.glfwMakeContextCurrent(self.win)
        
        # initialize GL
        glViewport(0, 0, self.width, self.height)
        glEnable(GL_DEPTH_TEST)
        glClearColor(0.0, 0.0, 0.0, 0.0)

        # set window callbacks
        glfw.glfwSetMouseButtonCallback(self.win, self.onMouseButton)
        glfw.glfwSetKeyCallback(self.win, self.onKeyboard)
        glfw.glfwSetWindowSizeCallback(self.win, self.onSize)

        # load volume data
        self.volume =  volreader.loadVolume(imageDir)
        # create renderer
        self.renderer = RayCastRender(self.width, self.height, self.volume)

        # exit flag
        self.exitNow = False
        
    def onMouseButton(self, win, button, action, mods):
        # print 'mouse button: ', win, button, action, mods
        pass
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    def onKeyboard(self, win, key, scancode, action, mods):
        # print 'keyboard: ', win, key, scancode, action, mods
        # ESC to quit
        if key is glfw.GLFW_KEY_ESCAPE:
            self.renderer.close()
            self.exitNow = True
        else:
            if action is glfw.GLFW_PRESS or action is glfw.GLFW_REPEAT:
                if key == glfw.GLFW_KEY_V:
                    # toggle render mode
                    if isinstance(self.renderer, RayCastRender):
                        self.renderer = SliceRender(self.width, self.height, 
                                                    self.volume)
                    else:
                        self.renderer = RayCastRender(self.width, self.height, 
                                                      self.volume)
                    # call reshape on renderer
                    self.renderer.reshape(self.width, self.height)
                else:
                    # send keypress to renderer
                    keyDict = {glfw.GLFW_KEY_X: 'x', glfw.GLFW_KEY_Y: 'y', 
                               glfw.GLFW_KEY_Z: 'z', glfw.GLFW_KEY_LEFT: 'l', 
                               glfw.GLFW_KEY_RIGHT: 'r'}
                    try:
                        self.renderer.keyPressed(keyDict[key])
                    except:
                        pass

    def onSize(self, win, width, height):
        #print 'onsize: ', win, width, height
        self.width = width
        self.height = height
        self.aspect = width/float(height)
        glViewport(0, 0, self.width, self.height)
        self.renderer.reshape(width, height)

    def run(self):
        # start loop
        while not glfw.glfwWindowShouldClose(self.win) and not self.exitNow:
            # render
            self.renderer.draw()
            # swap buffers
            glfw.glfwSwapBuffers(self.win)
            # wait for events
            glfw.glfwWaitEvents()
        # end
        glfw.glfwTerminate()

# main() function
def main():
  print('starting volrender...')
  # create parser
  parser = argparse.ArgumentParser(description="Volume Rendering...")
  # add expected arguments
  parser.add_argument('--dir', dest='imageDir', required=True)
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  # parse args
  args = parser.parse_args()

  # create render window
  rwin = RenderWin(args.imageDir)
  rwin.run()

# call main
if __name__ == '__main__':
  main()

running the Program
Here is a sample run of the application using data from the Stanford 
Volume Data Archive.3

$ python volrender.py --dir mrbrain-8bit/

You should see something like Figure 11-6.

Figure 11-6: Sample run of volrender .py . The image on the left is the volumetric rendering, 
and the image on the right is a 2D slice.

summary
In this chapter, you implemented the volume ray casting algorithm using 
Python and OpenGL. You learned how to use GLSL shaders to implement 
this algorithm efficiently, as well as how to create 2D slices from the volu-
metric data. 

3. http://graphics.stanford.edu/data/voldata/

http://graphics.stanford.edu/data/voldata/
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experiments!
Here are a few ways you could keep tinkering with the volume ray casting 
program:

1. Currently, it’s hard to see the boundary of the volumetric data “cube” 
in the ray casting mode. Implement a class WireFrame that draws a box 
around this cube. Color the x-, y-, and z-axes red, green, and blue, 
respectively, and give each its own shaders. You will use WireFrame from 
within the RayCastRender class. 

2. Implement data scaling. In the current implementation, you are draw-
ing a cube for the volume and a square for 2D slices, which assumes 
you have a symmetric data set (that the number of slices are the same 
in each direction), but most real data has a varying number of slices. 
Medical data, in particular, often has fewer slices in the z direction, 
with dimensions such as 256×256×99, for example. To display this data 
correctly, you have to introduce a scale into your computations. One 
way to do so is to apply the scale to the cube vertices (3D volume) and 
square vertices (2D slice). The user can then input the scaling param-
eters as command line arguments.

3. Our volume ray casting implementation uses x-ray casting to calculate 
the final color or intensity of a pixel. Another popular way to do this is 
to use maximum intensity projection (MIP) to set the maximum intensity at 
each pixel. Implement this in your code. (Hint: in the fragment shader 
of RayCastRender, modify the code that steps through the ray to check 
and set the maximum value along the ray, instead of blending values.)

4. Currently, the only UI you have implemented is rotation around the x-, y-, 
and z-axes. Implement a zoom feature so pressing I and O simultaneously 
will zoom in and out of the volume-rendered image. You could do this 
by setting the appropriate camera parameters in the glutils.lookAt() 
method, with one caveat: if you move your view inside the data cube, the 
ray casting will fail because OpenGL will clip the front-faces of the cube; 
the ray computation needed for ray casting requires both the front- and 
back-faces of the color cube to be rendered correctly. Instead, zoom by 
adjusting the field of view in the glutils.projecton() method. 



Part V
h a r d w a r e  h a C k i n g

“Those parts of the system that you can hit with a hammer 
(not advised) are called hardware; those program instruc-

tions that you can only curse at are called software.” 
—Anonymous





12
i n t r o d u C t i o n  t o  t h e  a r d u i n o

The Arduino is a simple microcontroller 
board and open source development envi-

ronment on a programmable chip. All ver-
sions of the Arduino contain the standard 

components of a computer, such as memory, a pro-
cessor, and an input/output system.

In this chapter, you begin your journey into the world of microcon-
trollers with the help of the Arduino. You’ll learn the basics of the Arduino 
platform and how to build Arduino programs in the Arduino program-
ming language (a version of C++). You’ll learn how to program an Arduino 
to gather data from a simple light sensor circuit that you’ll build and then 
send this data to your computer via a serial port. Next you’ll use pySerial to 
interface with the Arduino over a serial port, gather data, and graph it in 
real time using matplotlib. The graph will scroll to the right as new values 
come in, much like an EKG monitor. Figure 12-1 shows the circuit setup.
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LDR1

LDR2

R1

R2

Figure 12-1: A simple light-dependent resistor (LDR) circuit  
assembled on a breadboard and connected to an Arduino Uno

the arduino 
The Arduino is a platform built around a class of microcontroller chips 
called the Atmel AVR. There are many Arduino boards on the market, 
of varying size and capabilities. Figure 12-2 highlights some of the major 
components in the Arduino Uno boards, one of the more common variet-
ies available. The headers on the Arduino board (as shown in Figure 12-2) 
allow you to access the analog and digital pins of the microcontroller so 
you can talk to other electronics by sending and receiving data. (I recom-
mend Arduino Workshop by John Boxall [No Starch Press, 2013] to get a 
better understanding of the electronics and programming aspects of the 
Arduino.)
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Digital input/output pins

Microcontroller

External
programming

USB
connector

External
power supply

Power output Analog pins

Figure 12-2: Components of the Arduino Uno board

n o t e  Although I use the Arduino Uno board for the projects in this book, you should be able 
to use unofficial boards. If you do, see the Arduino website (http://arduino.cc/) to 
learn the differences between boards. For instance, some boards use different pin-
numbering conventions from the Uno.

The Arduino Uno board has a microcontroller chip, a universal serial 
bus (USB) connection, a jack for an external power supply, digital input/
output pins, analog pins, a power output that can be used by external cir-
cuits, and even pins for programming the chip directly.

The Arduino boards include a bootloader, which is a program that allows 
you to upload and run code on the microcontroller. If the bootloader weren’t 
included, you would need to use an in-circuit serial programming (ICSP) pro-
grammer to interact with the microcontroller. (The Arduino makes ICSP 
possible with pins for external programming called the ICSP headers.) The 
Arduino is easy to program because you can connect it to a computer via 
the USB port and use the Arduino software to upload code to the board.

The most important component of an Arduino board is the AVR micro-
controller, which is a computer on a chip. The AVR microcontroller on the 
Arduino Uno is an ATmega328 chip. It has a central processing unit (CPU), 
timers/counters, analog and digital pins, memory modules, and a clock 
module, among other things. The chip’s CPU executes the programs you 
upload. The timer/counter modules can be used to create periodic events 
within the program (such as checking a digital pin value every second). The 
analog pins use an analog-to-digital converter (ADC) module to convert 
the incoming analog signals to digital values, and the digital pins can act as 
either input or output depending on how you set them.

the arduino ecosystem
The Arduino sits at the center of an ecosystem that combines a programming 
language with an integrated development environment (IDE), a supportive 
and inventive community, and a host of peripherals.

http://arduino.cc/
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Language
The Arduino programming language is a simplified version of C++ with its 
origins in the Processing and Wiring prototyping languages. It is designed 
to be an easy language for people unfamiliar with programming. Programs 
written for the Arduino are called sketches. (For more on the Arduino pro-
gramming language, visit http://arduino.cc/.)

IDE
The Arduino includes a simple IDE where you create sketches and upload 
them to the Arduino (see Figure 12-3). The IDE also includes a serial moni-
tor that you can use to debug your applications by having the Arduino send 
information to the computer via the serial port. In addition, the IDE includes 
several example programs, as well as a bunch of standard libraries to per-
form common tasks and interface with external peripheral boards. 

Figure 12-3: A sample program in the Arduino IDE

Community
The Arduino has a large user base, and if you have questions about a project, 
you can turn to the Arduino community for help. Too, the Arduino com-
munity has developed many open source libraries that you can use in your 
project, and if you’re struggling with interfacing your Arduino to some sensor 
module, chances are someone has already solved the problem and a library 
is available to make your life easier.

http://arduino.cc/
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Peripherals
As with any popular platform, an industry has been built around the 
Arduino platform. A huge number of shields (boards that fit conveniently 
over the Arduino and provide easy access to sensors and other electronics), 
breakout boards (which ease wiring up difficult-to-solder components/circuits), 
and other peripherals, many of which can simplify your projects, are avail-
able for Arduino. SparkFun Electronics (https://www.sparkfun.com/) and 
Adafruit Industries (http://www.adafruit.com/) are two companies that build 
a number of products that can be used with the Arduino.

requirements
Now that you know some Arduino basics, let’s see how we can program a 
board to read data from a light-sensing circuit. In addition to an Arduino, 
you’ll also need two resistors and two light-dependent resistors (LDRs). Resistors 
are used to reduce current flow through a circuit and to lower voltages. 
You’ll use a light-dependent resistor (also called a photoresistor) whose elec-
trical resistance decreases as the intensity of light hitting it increases. You’ll 
also need a breadboard and wires to assemble the circuit, and a multimeter 
to check the connections. 

Building the light-sensing circuit
First you’ll build your light-sensing circuit, which consists of two regular 
resistors and two LDRs. Figure 12-4 shows the circuit diagram for your light- 
sensing circuit. (Appendix B includes some basic information on how to 
start building electronic circuits.) 

In Figure 12-4, VCC stands for a 
 connection to the 5V output of the 
Arduino, which powers the circuit. The 
items labeled LDR1 and LDR2 are the 
two light- dependent resistors, and A0 
and A1 are the Arduino’s analog pins 
0 and 1. (These analog pins allow the 
 microcontroller to read voltage levels 
from external circuits.) You can also see 
the resistors R1 and R2 and a ground 
(GND) connection, which can be any 
of the GND pins on the Arduino. You 
can assemble your circuit on a bread-
board (a plastic board with spring clips 
that are used to assemble circuits with-
out soldering) using a few wires for 
the  connections, as shown earlier in 
Figure 12-1.

VCC

GND

LD
R1

LD
R2

R1 R2

A0 A1

47
 k
Ω

47
 k
Ω

Figure 12-4: Schematic of a simple 
light-sensing circuit

https://www.sparkfun.com/
http://www.adafruit.com/
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How the Circuit Works
In this circuit, each LDR, and the resistor beneath it, act as a resistor divider, 
which is a simple circuit that uses two resistors to split an input voltage in two. 
This setup means the voltage at A0, for instance, is calculated as follows:

V V
R

R RLDR
0

1

1

=
+

R1 is the resistance of the resistor, and RLDR is the resistance of the LDR. 
V is the supply voltage, and V0 is the voltage across R1. As the intensity of light 
falling on the LDR changes, its resistance changes, and the voltage across it 
changes accordingly. The voltage (somewhere between 0 and 5 volts) is read 
at A0 and sent to your program as a 10-bit value, in the range [0, 1023]; that 
is, the voltage range is mapped to an integer range of [0, 1023].

The value of the R1 and R2 resistors that you’ll use in the circuit 
will depend on your choice of LDR. When you shine light on the LDR, its 
electrical resistance decreases; as a result, RLDR decreases, which means V0 
increases and a higher value is read in by the Arduino at the analog pin 
connected to this LDR. To determine the value of resistance that you need 
for R1 and R2, measure the resistance of the LDR using a multimeter under 
different light conditions and plug that value in to the voltage equation. 
You’re looking for a good variation in voltage (from 0V to 5V) across the 
range of lighting conditions in which you will be using the LDR.

I ended up using 4.7k ohm resistors for R1 and R2 because my LDRs 
varied in resistance from about 10k ohms (in the dark) to 1k ohm (in bright 
light). Enter these values into the previous equation, and you’ll see that you 
need a voltage range of 1.6V to 4V for the analog input. When you build the 
circuit, you can start with 4.7k ohm resistors and change them as needed. 

The Arduino Sketch
Now let’s write the Arduino sketch. Here’s the code that runs on the Arduino 
to make it read signals from the circuit and send them to the computer over 
a serial port:

#include "Arduino.h"

void setup()
{
    // initialize serial communications

u     Serial.begin(9600);
}

void loop()
{
    // read A0

v     int val1 = analogRead(0);
    // read A1

w     int val2 = analogRead(1);
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    // print to serial
x     Serial.print(val1);

    Serial.print(" ");
    Serial.print(val2);
    Serial.print("\n");
    // wait

y     delay(50);
}

At u, you enable serial communication inside the setup() method. 
Because setup() is called only when your program starts, this is a good place 
to put all of the initialization code. You initialize the baud rate (speed in 
bits per second) for the serial communications to 9600 here, which is the 
default for most devices and one that’s fast enough for your purposes.

The main code is in the loop() method. At v, you read the current signal 
value from analog pin 0 (a 10-bit integer in the range [0, 1023]), and at w, 
you read the current signal value from pin 1. At x and in the lines that fol-
low, use Serial.print() to send the values to the computer, formatted as two 
integers separated by a space and followed by a newline character. At y, you 
use delay() to suspend operations for a set time period, 50 milli seconds in 
this case, before the loop repeats. The value you use here determines the 
rate at which the AVR microcontroller executes the loop() method.

To upload the sketch to your Arduino, connect the Arduino to your 
computer, bring up its IDE, and start a new project. Then enter the code 
into the sketch window and click Verify to compile the code. The IDE will 
print any syntax-related errors and warnings. If all is well, click Upload to 
send the sketch to the Arduino. 

If you don’t see any errors at this stage, bring up the Serial Monitor 
from the Tools menu of the Arduino software, and you should see some-
thing like this:

512 300
513 280
400 200
...

These are the analog values read from analog pins 0 and 1 and sent 
serially through the Arduino’s USB port to your computer.

Creating the Real-Time Graph
To implement the scrolling real-time graph for your project, you’ll use a 
deque, as discussed in Chapter 4. The deque consists of an array of N values; 
adding and removing values at either end is quickly done. As new values 
come in, they are appended to the deque, and the oldest value is popped 
off. By plotting the values at regular intervals, you’ll produce a real-time 
graph with the newest data always added on the left.
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the Python code
Now let’s look at the Python program that reads from the serial port. 
(For the complete project code, you can skip ahead to “The Complete 
Python Code” on page 244.) To help better organize your code, define 
a class AnalogPlot, which holds the data to be plotted. Here is the class 
constructor:

class AnalogPlot:
    # constructor
    def __init__(self, strPort, maxLen):
        # open serial port

u         self.ser = serial.Serial(strPort, 9600)

v         self.a0Vals = deque([0.0]*maxLen)
w         self.a1Vals = deque([0.0]*maxLen)
x         self.maxLen = maxLen

At u, the AnalogPlot constructor creates a Serial object from the 
 pySerial library. You’ll use this class for serial communications with the 
Arduino. The first argument to the Serial constructor is the port name 
string, which you can find in the IDE by selecting Tools4Serial Port (on 
Windows, the string will be something like COM3; on Linux and OS X, it 
will be something like /dev/tty.usbmodem411). The second argument to the 
Serial constructor is the baud rate, which you set to 9600 to match the rate 
you set in the Arduino sketch. 

At v and w, you create deque objects to hold the analog values. You 
initialize the deque objects with a list of zeros of size maxLen, the maximum 
number of values you’ll plot at a given time. At x, this maxLen is stored in the 
AnalogPlot object.

To plot the analog values in real time, use the deque objects to buffer the 
most recent values, as shown in the AnalogPlot class.

    # add data
    def add(self, data):
        assert(len(data) == 2)

u         self.addToDeq(self.a0Vals, data[0])
v         self.addToDeq(self.a1Vals, data[1])

    # add to deque; pop oldest value
    def addToDeq(self, buf, val):

w         buf.pop()
x         buf.appendleft(val)

As you saw earlier, the Arduino sends only two analog integer values per 
line. In the add() method, the data values for each analog pin are added 
into two deque objects at u and v, using the addToDeq() method. At w and x, 
this method removes the oldest value from the tail of the deque using the 
pop() method and then appends the latest value to the head of the deque 
using the appendleft() method. When you plot values from this deque, the 
most recent value will always appear at left on the graph.
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You use the matplotlib animation class to update the plot at set intervals. 
(You may recall seeing this in action in the Boids project in Chapter 5.) 
Here is the update() method in AnalogPlot, which will be called at each step 
in the plot animation:

    # update plot
    def update(self, frameNum, a0, a1):
        try:

u           line = self.ser.readline()
v           data = [float(val) for val in line.split()]

          # print data
          if(len(data) == 2):

w               self.add(data)
x               a0.set_data(range(self.maxLen), self.a0Vals)
y               a1.set_data(range(self.maxLen), self.a1Vals)

        except:
z             pass

          return a0, a1

The update() method reads in a line of serial data as a string at u, and 
at v, you use a Python list comprehension to convert the values to floating-
point numbers and store them in a list. You use the split() method to split 
a string based on whitespace so that a string read from the serial port as 
512 600\n will be converted to [512, 600]. 

After checking that the data has two values, you use AnalogPlot add() 
at w to add the values to the deque. At x and y, you use the matplotlib 
set_data() method to update the graph with the new values. The x values 
for each plot are the numbers [0, ... maxLen], which you set using the range() 
method. The y values are populated from the updated deque object. 

All of this code is enclosed in a try block, and if an exception occurs, 
the code jumps to pass at z, where you ignore the reading (pass doesn’t 
do anything). (You use the try block because serial data can sometimes 
be corrupted by a loose contact in your circuit, for example, and you don’t 
want your program to crash just because some bad values are sent via the 
serial port.)

When you’re ready to exit, you close the serial port to release any system 
resources, as shown here:

    # clean up
    def close(self):
        # close serial
        self.ser.flush()
        self.ser.close()   

In your main() method, you need to set up the matplotlib animation:

    # set up animation
u     fig = plt.figure()
v     ax = plt.axes(xlim=(0, maxLen), ylim=(0, 1023))
w     a0, = ax.plot([], [])
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x     a1, = ax.plot([], [])
y     anim = animation.FuncAnimation(fig, analogPlot.update, 

                                   fargs=(a0, a1), interval=20)

    # show plot
z     plt.show()

At u, you get the matplotlib Figure module, which contains all the 
plot elements. You access the Axes module and set the x and y limits for the 
graph at v. The x limit is the number of samples, and the y limit is 1023 
since that’s the top of the range of the analog values. 

At w and x, you create two blank line objects (a0 and a1), which you 
pass to the animation class to set up the callback that supplies the coordi-
nates for each line. Then, at y, set up the animation by passing in the 
analogPlot update() method to be called with each animation step. You also 
specify the arguments to call that method and the time interval in milli-
seconds to 20. At z, you call plt.show() to start the animation.

The main() method of your program is also where you use the argparse 
Python module to support command line options.

    # create parser
    parser = argparse.ArgumentParser(description="LDR serial")
    # add expected arguments
    parser.add_argument('--port', dest='port', required=True)
    parser.add_argument('--N', dest='maxLen', required=False)

    # parse args
    args = parser.parse_args()

    strPort = args.port

    # plot parameters
    maxLen = 100
    if args.maxLen:
        maxLen = int(args.maxLen)

The --port argument is required. It tells the program the name of the 
serial port where the data is received (find this in the Arduino IDE under 
Tools4Serial Port). The maxLen argument is optional and can be used to set 
the number of points to plot at a time. (The default is 100 samples.)

the complete Python code
Here is the complete Python code for this project. You can also download 
the complete code listing from https://github.com/electronut/pp/tree/master/
arduino-ldr/ldr.py.

import serial, argparse
from collections import deque

https://github.com/electronut/pp/tree/master/arduino-ldr/ldr.py
https://github.com/electronut/pp/tree/master/arduino-ldr/ldr.py
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import matplotlib.pyplot as plt 
import matplotlib.animation as animation

    
# plot class
class AnalogPlot:
    # constructor
    def __init__(self, strPort, maxLen):
        # open serial port
        self.ser = serial.Serial(strPort, 9600)

        self.a0Vals = deque([0.0]*maxLen)
        self.a1Vals = deque([0.0]*maxLen)
        self.maxLen = maxLen

    # add data
    def add(self, data):
        assert(len(data) == 2)
        self.addToDeq(self.a0Vals, data[0])
        self.addToDeq(self.a1Vals, data[1])

    # add to deque; pop oldest value
    def addToDeq(self, buf, val):
        buf.pop()
        buf.appendleft(val)

    # update plot
    def update(self, frameNum, a0, a1):
        try:
            line = self.ser.readline()
            data = [float(val) for val in line.split()]
            # print data
            if(len(data) == 2):
                self.add(data)
                a0.set_data(range(self.maxLen), self.a0Vals)
                a1.set_data(range(self.maxLen), self.a1Vals)
        except:
            pass

        return a0, a1

    # clean up
    def close(self):
        # close serial
        self.ser.flush()
        self.ser.close()    

# main() function
def main():
    # create parser
    parser = argparse.ArgumentParser(description="LDR serial")
    # add expected arguments
    parser.add_argument('--port', dest='port', required=True)
    parser.add_argument('--N', dest='maxLen', required=False)
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    # parse args
    args = parser.parse_args()
  
    #strPort = '/dev/tty.usbserial-A7006Yqh'
    strPort = args.port

    print('reading from serial port %s...' % strPort)

    # plot parameters
    maxLen = 100
    if args.maxLen:
        maxLen = int(args.maxLen)

    # create plot object
    analogPlot = AnalogPlot(strPort, maxLen)

    print('plotting data...')

    # set up animation
    fig = plt.figure()
    ax = plt.axes(xlim=(0, maxLen), ylim=(0, 1023))
    a0, = ax.plot([], [])
    a1, = ax.plot([], [])
    anim = animation.FuncAnimation(fig, analogPlot.update, 
                                   fargs=(a0, a1), interval=20)

    # show plot
    plt.show()
  
    # clean up
    analogPlot.close()

    print('exiting.')
  

# call main
if __name__ == '__main__':
    main()

running the Program
To test the program, assemble the LDR circuit, connect the Arduino to 
your computer, upload the sketch, and then run the Python code.

$ python3 --port /dev/tty.usbmodem411 ldr.py

Figure 12-5 shows sample output of the program, specifically, a graph 
generated when the LDRs are exposed to light and then covered. As you 
can see in the graph, when the resistance of the LDRs changes, the ana-
log voltage read in by the Arduino also changes. The peak in the center 
occurred when I quickly passed my hand over the LDRs, and the flat part 
at the right occurred when I passed my hand over more slowly. 
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Figure 12-4: Sample run of the light-sensitive plotting program

The two LDRs have different resistance characteristics, which is why the 
lines don’t coincide perfectly, but as you can see, they react to changes in 
light levels in the same way.

summary
In this project, you were introduced to the world of microcontrollers and 
the Arduino platform. You learned Arduino programming syntax and how 
to upload a program to the Arduino. You also learned how to read analog 
 values from an Arduino pin and create a simple LDR circuit. In addition, 
you learned how to send data from Arduino via the serial port and read 
it from the computer using Python. You also learned to visualize the data 
using a real-time scrolling graph and matplotlib.

experiments!
Try these modifications to your Arduino project.

1. In your program, the graph scrolls from left to right; in other words, 
older values move to the right as new values come in from the left. 
Invert the scrolling direction so the graph moves from right to left.

2. The Arduino code reads analog values at regular intervals and sends 
them to the serial port. The incoming data could fluctuate in certain 
types of sensors, and applying some type of filtering to smooth out 
the data is common. Implement an averaging scheme for the LDR 



248   Chapter 12

data. (Hint: maintain a running average of N analog values read in 
for each LDR. The average value should be sent to the serial port at 
regular intervals. Decrease the delay() in the loop so it reads in values 
more quickly. Is the new graph of averages smoother than the original 
graph? Try different values for N and see what happens.)

3. You have two LDRs in your sensor circuit. Keeping these LDRs under 
a good source of light, sweep your hand over them. You should see a 
sharp change in the graphs—with one LDR plot line changing a little 
before the other one since it was obscured first. Can you use this infor-
mation to detect the direction of movement of your hand? This is a 
basic gesture detection project. (Hint: the sharp change in the graph 
in the LDRs will happen at different times, telling you which LDR was 
obscured first and thus giving you the direction of hand movement.)



13
l a s e r  a u d i o  d i s P l a y

In Chapter 12, you learned the basics of 
the Arduino, which is perfect for inter-

facing with low-level electronic devices. 
In this project, you’ll leverage the Arduino 

to build hardware to produce interesting laser pat-
terns from audio signals. This time, Python will do 
more of the heavy lifting. In addition to handling 
serial communications, it will perform computations 
based on real-time audio data and use that data to 
adjust the motors in a laser display rig. 

For these purposes, think of a laser as an intense beam of light that 
remains focused in a tiny point, even when projected over a large distance. 
This focus is possible because the beam is organized so that its waves travel 
in one direction only and are in phase with each other. For this project, 
you’ll use an inexpensive, easily obtainable laser pointer to create a laser 
pattern that changes in sync to music (or any audio input). You’ll build 
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hardware that creates interesting patterns using the laser pointer and two 
rotating mirrors attached to motors. You’ll use the Arduino to set the 
direction and rotational speed of the motors, which you’ll control with 
Python via the serial port. The Python program will read audio input, 
analyze it, and convert it to motor speed and direction data to control the 
motors. You’ll also learn how to set the speed and direction of the motors 
to sync the patterns with music. 

In this project, you will push your Arduino and Python knowledge fur-
ther. Here are some of the topics we’ll cover:

•	 Generating interesting patterns with a laser and two rotating mirrors

•	 Getting frequency information from a signal using fast Fourier 
transform

•	 Computing fast Fourier transform using numpy

•	 Reading audio data using pyaudio

•	 Setting up serial communications between a computer and an Arduino

•	 Driving motors with an Arduino

generating Patterns with a laser
To generate the laser patterns in this project, you’ll use a laser pointer 
and two mirrors attached to the shafts of two small DC motors as shown in 
Figure 13-1. If you shine a laser at the surface of the flat mirror (mirror A), 
the reflection projected will remain a point, even if the motor is spinning. 
Because the plane of reflection of the laser is perpendicular to the spinning 
axis of the motor, it’s as if the mirror is not rotating at all.

Now, say the mirror is attached at an angle to the shaft, as shown on the 
right in Figure 13-1 (mirror B). As the shaft rotates, the projected point will 
trace an ellipse, and if the motor is spinning fast enough, the viewer will 
perceive the moving dot as a continuous shape.

Motor A

Mirror B

Motor B

Mirror A

Figure 13-1: The flat mirror (mirror A) reflects a 
 single dot. The reflection off the slanted mirror 
( mirror B) creates a circle as the motor spins.
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What if you arrange the mirrors so that the point reflected off mirror A 
is projected onto mirror B? Now when motors A and B spin, the pattern 
created by the reflected point will be a combination of the two rotational 
movements of motors A and B, producing interesting patterns, as shown in 
Figure 13-2.

Motor B

Motor A

Laser pointer

Pattern

Mirror B Mirror A

Figure 13-2: Reflecting laser light off two rotating, slanted mirrors  
produces interesting, complex patterns.

The exact patterns produced will depend on the speed and direction 
of rotation of the two motors, but they will be similar to the hypotrochoids 
produced by the Spirograph you explored in Chapter 2.

Motor Control
You’ll use the Arduino to control the speed and direction of your motors. 
This setup requires some care to make sure it can take the relatively high 
voltage of the motors, because the Arduino can handle only so much cur-
rent before it is damaged. You can protect the Arduino, simplify the design, 
and reduce development time by using the SparkFun TB6612FNG periph-
eral breakout board shown in Figure 13-3(a). Use the breakout board to con-
trol two motors simultaneously from an Arduino. 
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A B

Figure 13-3: SparkFun Motor Driver 1A Dual TB6612FNG

Figure 13-3(b) shows the soldered backside of the breakout board. The 
A and B in the pin names denote the two motors. The IN pins control the 
direction of the motors, the 01 and 02 pins supply power to the motors, and 
the PWM pins control the motor speeds. By writing to these pins, you can 
control both the direction and speed of rotation for each motor, which is 
exactly what you need for this project.

n o t e  You could replace this breakout part with any motor control circuit you’re familiar 
with, as long as you modify the Arduino sketch appropriately.

The Fast Fourier Transform
Because the ultimate goal in this project is to control motor speeds based 
on audio input, you need to be able to analyze the frequency of the audio. 

Recall from Chapter 4 that tones from an acoustic instrument are a 
mix of several frequencies or overtones. In fact, any sound can be decom-
posed into its constituent frequencies using Fourier transforms. When the 
Fourier transform is applied to digital signals, the result is called the discrete 
Fourier transform (DFT) because digital signals are comprised of many discrete 
 samples. In this project, you’ll use Python to implement a fast Fourier trans-
form (FFT) algorithm to compute the DFT. (Throughout this chapter I’ll use 
FFT to refer to both the algorithm and the result.)

Here is a simple example of an FFT. Figure 13-4 shows a signal that 
combines just two sine waves, with the corresponding FFT below it. The 
wave at the top can be expressed by the following equation, which sums 
the two waves:

y(t) = 4sin(2p10t) + 2.5sin(2p30t)

Notice the 4 and 10 in the expression for the first wave—4 is the ampli-
tude of the wave, and 10 is the frequency (in Hertz) of the wave. Meanwhile, 
the second wave has an amplitude of 2.5 and a frequency of 30.
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The FFT reveals the wave’s component frequencies and their relative 
amplitude, showing peaks at 10 Hz and 30 Hz. The intensity of the first 
peak is about twice that of the second peak.

Figure 13-4: An audio signal captured from music (top) and its corresponding FFT (bottom)

Now let’s look at a more complex example. Figure 13-5 shows an audio 
signal in the top frame and the corresponding FFT in the bottom frame. 

Figure 13-5: The FFT algorithm takes an amplitude signal (top) and computes its  
component frequencies (bottom).

The audio input, or signal, is in the time domain because the amplitude 
data varies with time. The FFT is in the frequency domain. Notice in the fig-
ure that the FFT displays a series of peaks showing the intensities of various 
frequencies in the signal. 

To compute an FFT, you need a set of samples. The choice of the num-
ber of samples is a bit arbitrary, but a small sample size would not give you 
a good picture of the signal’s frequency content and might also mean a 
higher computational load because you would need to compute more FFTs 
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per second. On the other hand, a sample size that’s too large would average 
out the changes in the signal, so you wouldn’t be getting a “real-time” fre-
quency response for the signal. For the sampling rate of 44100 Hz used for 
this project, a sample size of 2048 represents data for about 0.046 seconds.

For this project, you need to split the audio data into its constituent fre-
quencies and use that information to control the motors. First, you’ll split 
the range of frequencies (in Hz) into three bands: [0, 100], [100, 1000], 
and [1000, 2500]. You’ll compute an average amplitude for each band, and 
each value will affect the motors and resulting laser pattern differently, 
as follows:

•	 Changes in the average amplitude of low frequencies will affect the 
speed of the first motor.

•	 Changes in the average amplitude of middle frequencies will affect the 
speed of the second motor.

•	 When high frequencies peak above a certain threshold, the first motor 
will change direction.

requirements
Here’s a list of the items you’ll need to build this project:

•	 A small laser pointer

•	 Two DC motors like the ones used in a small toy (rated for 9V)

•	 Two small mirrors approximately 1 inch or less in diameter

•	 A SparkFun Motor Driver 1A Dual TB6612FNG

•	 An Arduino Uno or similar board

•	 Wire to make connections (single-core hookup wires with male pins on 
both sides work nicely)

•	 A four AA battery pack

•	 Some LEGO bricks to raise the motors and laser pointer off the mount-
ing board so the mirrors can spin freely

•	 A rectangular sheet of cardboard or acrylic about 8 inches × 6 inches to 
mount the hardware

•	 A hot glue gun

•	 Soldering iron

Constructing the Laser Display
The first order of business is to attach the mirrors to the motors. The mir-
ror has to be at a slight angle to the motor shaft. To attach the mirror, 
place it facedown on a flat surface and put a drop of hot glue in the center. 
Carefully dip the motor shaft in the glue, keeping it perpendicular to the 
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mirror until the glue hardens (see Figure 13-6). To test it, spin the mirror 
with your hand while shining the laser pointer at it. You should find the 
reflection of the laser dot moves in an ellipse when projected on a flat sur-
face. Do the same for the second mirror.

Figure 13-6: Attach the mirrors to each  
motor shaft at a slight angle.

aligning the Mirrors

Next, align the laser pointer with the mirrors so that the laser reflects from 
mirror A to B, as shown in Figure 13-7. Be sure that the reflected laser light 
from mirror A stays within the circumference of mirror B for mirror A’s 
entire range of rotation. (This will take some trial and error.) To test the 
arrangement, manually rotate mirror A. Also, be sure to position mirror B 
so that the light reflected from its surface will fall on a flat surface (like a 
wall) for the full range of rotation of both the mirrors. 

Figure 13-7: The alignment of the laser and the mirrors

n o t e  As you tweak things, you will need to keep the laser pointer on. If your laser pointer 
has an on button, tape it down to keep the laser pointer on. (Or see “Experiments!” 
on page 271 for a more elegant way to control the power of the laser pointer.)
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Once you’re happy with the placement of the mirrors, hot glue the 
laser pointer and the two motors with attached mirrors onto three identi-
cal blocks to raise them up so that they’ll be able to rotate freely. Next, 
place the blocks on the mounting board, and when you’re happy with their 
arrangement, mark the location of each by tracing their edge with a pencil. 
Then glue the blocks onto the board.

Powering the Motors

If your motors did not come with wires attached to their terminals (most 
don’t), solder wires to both terminals, being sure to leave sufficient wire 
(say 6 inches) so that you can attach the motors to the motor driver board. 
The motors are powered by four AA batteries in a battery pack, which you 
can hot glue to the back of the mounting board, as shown in Figure 13-8.

Figure 13-8: Glue the battery pack to the back of the  
mounting board.

Now test the hardware by spinning both mirrors with your hands as the 
laser shines on them. If you spin them fast enough, you should see some 
interesting patterns emerging in a glimpse of what’s to come!

Wiring the Motor Driver
In this project, you’ll use the Sparkfun Motor Driver (TB6612FNG) to 
control the motors with the Arduino. I won’t go into the details of how 
this board works, but if you’re curious, you can start by reading up on an 
H bridge, a common circuit design that uses metal-oxide-semiconductor field-
effect transistors (MOSFETs) to control motors.

Now you’ll connect the motors to the SparkFun motor driver and the 
Arduino. There are quite a few wires to connect, as listed in Table 13-1. 
Label one motor A and the other B, and keep to this convention when 
 wiring them. 
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table 13-1: SparkFun Motor Driver to Arduino Wiring

from to

Arduino Digital Pin 12 TB6612FNG Pin BIN2

Arduino Digital Pin 11 TB6612FNG Pin BIN1

Arduino Digital Pin 10 TB6612FNG Pin STBY

Arduino Digital Pin 9 TB6612FNG Pin AIN1

Arduino Digital Pin 8 TB6612FNG Pin AIN2

Arduino Digital Pin 5 TB6612FNG Pin PWMB

Arduino Digital Pin 3 TB6612FNG Pin PWMA

Arduino 5V Pin TB6612FNG Pin VCC

Arduino GND TB6612FNG Pin GND

Arduino GND Battery Pack GND (–)

Battery Pack VCC (+) TB6612FNG Pin VM

Motor #1 Connector #1 (polarity doesn’t matter) TB6612FNG Pin A01

Motor #1 Connector #2 (polarity doesn’t matter) TB6612FNG Pin A02

Motor #2 Connector #1 (polarity doesn’t matter) TB6612FNG Pin B01

Motor #2 Connector #2 (polarity doesn’t matter) TB6612FNG Pin B02

Arduino USB connector Computer’s USB port

Figure 13-9 shows everything wired up.

Figure 13-9: The completely wired laser display

Now let’s work on the Arduino sketch.



258   Chapter 13

the arduino sketch
You’ll start the sketch by setting up the digital output pins of the Arduino. 
Then, in the main loop, you will read data coming in via the serial port and 
convert the data into parameters that need to be sent to the motor driver 
board. You’ll also look at how to implement speed and direction control for 
the motors.

Configuring the Arduino’s Digital Output Pins
First, map the Arduino’s digital pins to the pins on the motor driver accord-
ing to Table 13-1 and set the pins as outputs.

// motor A connected to A01 and A02
// motor B connected to B01 and B02

u int STBY = 10; //standby

// Motor A
int PWMA = 3;  //speed control 
int AIN1 = 9;  //direction
int AIN2 = 8;  //direction

// Motor B
int PWMB = 5;  //speed control
int BIN1 = 11; //direction

v int BIN2 = 12; //direction

void setup(){

w     pinMode(STBY, OUTPUT);

    pinMode(PWMA, OUTPUT);
    pinMode(AIN1, OUTPUT);
    pinMode(AIN2, OUTPUT);

    pinMode(PWMB, OUTPUT);
    pinMode(BIN1, OUTPUT);
    pinMode(BIN2, OUTPUT);

    // initialize serial communication
x     Serial.begin(9600);

}

From u to v, you map the names of the Arduino pins to the motor 
driver pins. For example, PWMA (Pulse With Modulation A) controls the 
speed of motor A and is assigned to Arduino pin 3. PWM is a way to power 
a device by sending digital pulses that switch on and off quickly such that 
the device “sees” a continuous voltage. The fraction of time that the digi-
tal pulse is on is called the duty cycle and is expressed as a percentage. By 
changing this percentage, you can provide varying power levels to a device. 
PWM is often used to control dimmable LEDs and motor speeds.
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Then, you call the setup() method at w, and in the lines that follow, you 
set all seven digital pins as output. At x, you start serial communication, 
reading in serial data sent by the computer on the Arduino.

The Main Loop
The main loop in the sketch waits for serial data to arrive, parses it to 
extract the motor speed and direction, and uses that information to set 
the digital outputs for the driver board that controls the motors. 

// main loop that reads the motor data sent by laser.py 
void loop() 
{
    // data sent is of the form 'H' (header), speed1, dir1, speed2, dir2

u     if (Serial.available() >= 5) {
v         if(Serial.read() == 'H') {

            // read the next 4 bytes
w             byte s1 = Serial.read();

            byte d1 = Serial.read();
            byte s2 = Serial.read();
            byte d2 = Serial.read();
      
            // stop the motor if both speeds are 0

x             if(s1 == 0 && s2 == 0) {
                stop();
            }
            else {
                // set the motors' speed and direction

y                 move(0, s1, d1);
                move(1, s2, d2);
            }
            // slight pause for 20 ms

z             delay(20);
        }
        else {
            // if there is invalid data, stop the motors

{             stop(); 
        }
    }
    else {
        // if there is no data, pause for 250 ms

|         delay(250);
    }
}

The motor control data is sent as a set of 5 bytes: H followed by 4 single-
byte numbers, s1, d1, s2, and d2, which represent the speed and direction 
of the motors. Since serial data comes in continuously, at u, you check to 
ensure that you have received at least 5 bytes. If not, you delay for 250 milli-
seconds | and try to read the data again in the next cycle. 

At v, you check that the first byte you read in is an H to ensure that 
you’re at the beginning of a proper set of control data and that the next 
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4 bytes are what you expect them to be. If not, you stop the motors at { 
because the data may have been corrupted by transmission or connection 
errors. 

Beginning at w, the sketch reads the speed and direction data for the 
two motors. If both motor speeds are set to zero, stop the motors x. If not, 
the speed and direction values are assigned to the motors at y, using the 
move() method. At z, you add a small delay in data reading to allow the 
motors to keep up and to make sure you’re not reading in data too fast.

Here is the move() method used to set the speed and direction of the 
motors:

// set motor speed and direction
// motor: A -> 1, B -> 0
// direction: 1/0 
void move(int motor, int speed, int direction)
{
    // disable standby

u     digitalWrite(STBY, HIGH); 

v     boolean inPin1 = LOW;
    boolean inPin2 = HIGH;

w     if(direction == 1){
        inPin1 = HIGH;
        inPin2 = LOW;
    }

    if(motor == 1){
x         digitalWrite(AIN1, inPin1);

        digitalWrite(AIN2, inPin2);
        analogWrite(PWMA, speed);
    }
    else{

y         digitalWrite(BIN1, inPin1);
        digitalWrite(BIN2, inPin2);
        analogWrite(PWMB, speed);
    }
}

The motor driver has a standby mode to save power when the motors 
are off. You leave standby by writing HIGH to the standby pin at u. At v, you 
define two Boolean variables, which determine the direction of rotation of 
the motors. At w, if the direction argument is set to 1, you flip the values of 
these variables, which allows you to switch the motor’s direction in the code 
that follows. 

You set the pins AIN1, AIN2, and PWMA for motor A at x. Pins AIN1 and 
AIN1 control the motor’s direction, and you use the Arduino digitalWrite() 
method to set one pin to HIGH (1) and one to LOW (0) as needed. In the 
case of pin PWMA, you send the PWM signal, which allows you to control the 
motor’s speed, as described earlier. To control the value of the PWM, you 
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use the analogWrite() method to write a value in the range [0, 255] to an 
Arduino output pin. (In contrast, the digitalWrite() method only lets you 
write either a 1 or 0 to the output pin.) 

At y, you set the pins for motor B.

Stopping the Motors
To stop the motors, you write a LOW to the standby pin of the motor driver.

void stop(){
    //enable standby
    digitalWrite(STBY, LOW);
}

the Python code
Now let’s look at the Python code running on the computer. This code 
does the heavy lifting: it reads in audio, computes the FFT, and sends 
serial data to the Arduino. You can find the complete project code in “The 
Complete Python Code” on page 267.

Selecting the Audio Device
First, you need to read in the audio data with the help of the pyaudio module. 
Initialize the pyaudio module like this:

p = pyaudio.PyAudio()

Next, you access the computer’s audio input device using the helper 
functions in pyaudio, as shown in the code for the getInputDevice() method:

# get pyaudio input device
def getInputDevice(p):

u     index = None
v     nDevices = p.get_device_count()

    print('Found %d devices. Select input device:' % nDevices)
    # print all devices found
    for i in range(nDevices):

w         deviceInfo = p.get_device_info_by_index(i)
x         devName = deviceInfo['name']
y         print("%d: %s" % (i, devName))

    # get user selection
    try:
        # convert to integer

z         index = int(input())
    except:
        pass

    # print the name of the chosen device
    if index is not None:
        devName = p.get_device_info_by_index(index)["name"]
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        print("Input device chosen: %s" % devName)
{     return index 

At u, you set an index variable to None. (This index is the return value 
for the function at {, and if it is returned as None, you know that no suit-
able input device was found.) At v, you use the get_device_count() method 
to get the number of audio devices on the computer, including any audio 
hardware such as microphones, line inputs, or line outputs. You then iterate 
through all found devices, getting information about each. 

The get_device_info_by_index() function at w returns a dictionary 
containing information about various features of each audio device, but 
you’re interested only in the name of the device because you’re looking for 
an input device. You store the device name at x, and at y, you print out the 
index and name of the device. At z, you use the input() method to read the 
selection from the user, converting the string read in to an integer index. 
At {, this selected index is returned from the function.

Reading Data from the Input Device
Once you have selected the input device, you need to read data from it. To 
do so, you first open the audio stream, as shown here. (Note that all the 
code runs continuously in a while loop.)

    # set FFT sample length
u     fftLen = 2**11

    # set sample rate
v     sampleRate = 44100

    print('opening stream...')
w     stream = p.open(format = pyaudio.paInt16,

                    channels = 1,
                    rate = sampleRate,
                    input = True,
                    frames_per_buffer = fftLen,
                    input_device_index = inputIndex)

At u, you set the length of the FFT buffer—the number of audio samples 
you will use to compute the FFT—to 2048 (which is 211; FFT algorithms are 
optimized for powers of 2). Then, you set the sampling rate for pyaudio to 
44100 or 44.1 kHz v, which is standard for CD-quality recordings. 

Next, you open the pyaudio stream w and specify several options:

•	 pyaudio.paInt16 indicates that you’re reading in the data as 16-bit 
integers.

•	 channels is set to 1 because you’re reading the audio as a single channel.

•	 rate is set to the chosen sample rate of 44100 Hz.

•	 input is set to True.
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•	 frames_per_buffer is set to the FFT buffer length.

•	 input_device_index is set to the device you chose in the getInputDevice() 
method.

Computing the FFT of the Data Stream
Here is the code you use to read data from the stream:

            # read a chunk of data
u             data  = stream.read(fftLen)

            # convert the data to a numpy array
v             dataArray = numpy.frombuffer(data, dtype=numpy.int16)

At u, you read the most recent fftLen samples from the audio input 
stream. Then you convert this data into a 16-bit integer numpy array at v. 

Now you compute the FFT of this data.

            # get FFT of data
u             fftVals = numpy.fft.rfft(dataArray)*2.0/fftLen

            # get absolute values of complex numbers
v             fftVals = numpy.abs(fftVals)

At u, you compute the FFT of the values in the numpy array, using the 
rfft() method from the numpy fft module. This method takes a signal com-
posed of real numbers (like the audio data) and computes the FFT, which 
generally results in a set of complex numbers. The 2.0/fftLen is a normaliza-
tion factor you use to map the FFT values to the expected range. Then, 
because the rfft() method returns complex numbers, you use the numpy 
abs() method v to get the magnitudes of these complex numbers, which 
are real.

Extracting Frequency Information from the FFT Values
Next, you extract the relevant frequency information from the FFT values.

            # average 3 frequency bands: 0-100 Hz, 100-1000 Hz, and 1000-2500 Hz
            levels = [numpy.sum(fftVals[0:100])/100,
                      numpy.sum(fftVals[100:1000])/900,
                      numpy.sum(fftVals[1000:2500])/1500] 

To analyze the audio signal, you split the frequency range into three 
bands: 0 to 100 Hz, 100 to 1000 Hz, and 1000 to 2500 Hz. You are most 
interested in the lower, bass band (0–100 Hz) and the midrange (100–
1000 Hz) frequencies, which roughly correspond to the beat and the vocals 
in a song, respectively. For each range, you compute the average FFT value 
using the numpy.sum() method in the code. 

Converting Frequency to Motor Speed and Direction
Now convert this frequency information to motor speeds and directions.
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            # 'H' (header), speed1, dir1, speed2, dir2
u             vals = [ord('H'), 100, 1, 100, 1]

            # speed1
v             vals[1] = int(5*levels[0]) % 255

            # speed2
w             vals[3] = int(100 + levels[1]) % 255

            # dir
            d1 = 0

x             if levels[2] > 0.1:
                d1 = 1
            vals[2] = d1

y             vals[4] = 0

At u, you initialize a list of motor speeds and direction values to be sent 
to the Arduino (the 5 bytes, starting with H discussed earlier). Use the built-
in ord() function to convert the string to an integer and then fill in this list 
by converting the average values for the three frequency bands into motor 
speeds and directions. 

n o t e   This part is a hack, really—there’s no particularly elegant rule governing these con-
versions. These values change constantly with the audio signal, and any method you 
come up with will change the motor speeds and affect the laser pattern along with the 
music. Just make sure your conversion puts the motor speeds in the [0, 255] range 
and that the directions are always set to 1 or 0. The method I chose was simply based 
on trial and error; I looked at FFT values while playing various types of music.

At v, you take the value from the lowest frequency range, scale it by a 
factor of five, convert it to an integer, and use the modulus operator (%) to 
ensure that the value lies within the [0, 255] range. This value controls the 
speed of the first motor. At w, you add 100 to the middle frequency value 
and place it in the [0, 255] range. This value controls the speed of the second 
motor. 

Then, at x, you switch the motor A direction whenever the value from 
the highest frequency range crosses the threshold of 0.1. The motor B direc-
tion is kept at a constant 0 y. (I found through trial and error that these 
methods produce a nice variation of patterns, but I encourage you to play 
with these values and create your own conversions. There are no wrong 
answers here.)

Testing the Motor Setup
Before testing the hardware with a live audio stream, let’s check the motor 
setup. The function autoTest(), shown here, does just that:

# automatic test for sending motor speeds
def autoTest(ser):
    print('starting automatic test...')
    try:
        while True:
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            # for each direction combination
u             for dr in [(0, 0), (1, 0), (0, 1), (1, 1)]:

                # for a range of speeds
v                 for j in range(25, 180, 10):
w                     for i in range(25, 180, 10):
x                         vals = [ord('H'), i, dr[0], j, dr[1]]
y                         print(vals[1:])
z                         data = struct.pack('BBBBB', *vals)
{                         ser.write(data)

                        sleep(0.1)
    except KeyboardInterrupt:
        print('exiting...')
        # shut off motors

|         vals = [ord('H'), 0, 1, 0, 1]
        data = struct.pack('BBBBB', *vals)
        ser.write(data)
        ser.close()

This method takes the two motors through a range of motions by vary-
ing the speed and direction of each. Because the direction can be clockwise 
or counterclockwise for each motor, four such combinations are represented 
in the outer loop at u. For each combination, the loops at v and w run the 
motors at various speeds. 

n o t e  I’m using range(25, 180, 10), which means the speed varies from 25 to 180 in steps 
of 10. I am not using the full range of motion of the motor [0, 255] here because the 
motors barely turn below a speed of 25 and they spin really fast above 200. 

At x, you generate the 5-byte motor data values, and at y, you print 
their direction and speed values. (The use of Python string splicing vals[1:] 
will get all but the first element in the list.) 

Pack the motor data into a byte array at z, and write it to the serial 
port at {. Pressing ctrl-c interrupts this test, and at |, you handle this 
exception by cleaning up, stopping the motors, and closing the serial port 
like the responsible programmer you are.

Command Line Options
As with previous projects, you use the argparse module to parse command 
line arguments for the program.

# main method
def main():
    # parse arguments
    parser = argparse.ArgumentParser(description='Analyzes audio input and 
sends motor control information via serial port')
    # add arguments
    parser.add_argument('--port', dest='serial_port_name', required=True)
    parser.add_argument('--mtest', action='store_true', default=False)
    parser.add_argument('--atest', action='store_true', default=False)
    args = parser.parse_args()
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In this code, the serial port is a required command line option. There 
are also two optional command line options: one for an automatic test 
(covered earlier) and another for a manual test (which I’ll discuss shortly).

Here is what happens once the command line options are parsed in the 
main() method:

    # open serial port
    strPort = args.serial_port_name
    print('opening ', strPort)

u     ser = serial.Serial(strPort, 9600)
    if args.mtest:
        manualTest(ser)
    elif args.atest:
        autoTest(ser)
    else:

v         fftLive(ser)

At u, you use pySerial to open a serial port with the string passed in to 
the program. The speed of serial communications, or the baud rate, is set at 
9,600 bits per second. If no other command arguments (--atest or --mtest) 
are used, you proceed at v to the audio processing and FFT computation, 
encapsulated in the fftLive() method.

Manual Testing
This manual test lets you enter specific motor directions and speeds so that 
you can see their effects on the laser pattern.

# manual test of motor direction and speeds
def manualTest(ser):
    print('starting manual test...')
    try:
        while True:
            print('enter motor control info such as < 100 1 120 0 >')

u             strIn = raw_input()
v             vals = [int(val) for val in strIn.split()[:4]]
w             vals.insert(0, ord('H'))
x             data = struct.pack('BBBBB', *vals)
y             ser.write(data)

    except:
        print('exiting...')
        # shut off the motors

z         vals = [ord('H'), 0, 1, 0, 1]
        data = struct.pack('BBBBB', *vals)
        ser.write(data)
        ser.close()

At u, you use the raw_input() method to wait until the user enters a 
value at the command prompt. The expected entry is in the form 100 1 
120 0, representing the speed and direction of motor A followed by that of 
motor B. Parse the string into a list of integers at v. At w, you insert an 'H' 
to complete the motor data, and at x and y, you pack this data and send it 



Laser Audio Display   267

through the serial port in the expected format. When the user interrupts 
the test using ctrl-C (or if any exception occurs), you clean up at z by 
shutting down the motors and the serial port gracefully.

the complete Python code
Here is the complete Python code for this project. You’ll can also find this 
at https://github.com/electronut/pp/tree/master/arduino-laser/laser.py.

import sys, serial, struct
import pyaudio
import numpy
import math
from time import sleep
import argparse

# manual test of motor direction speeds
def manualTest(ser):
    print('staring manual test...')
    try:
        while True:
            print('enter motor control info: eg. < 100 1 120 0 >')
            strIn = raw_input()
            vals = [int(val) for val in strIn.split()[:4]]
            vals.insert(0, ord('H'))
            data = struct.pack('BBBBB', *vals)
            ser.write(data)
    except:
        print('exiting...')
        # shut off motors
        vals = [ord('H'), 0, 1, 0, 1]
        data = struct.pack('BBBBB', *vals)
        ser.write(data)
        ser.close()

# automatic test for sending motor speeds
def autoTest(ser):
    print('staring automatic test...')
    try:
        while True:
            # for each direction combination
            for dr in [(0, 0), (1, 0), (0, 1), (1, 1)]:
                # for a range of speeds
                for j in range(25, 180, 10):
                    for i in range(25, 180, 10):
                        vals = [ord('H'), i, dr[0], j, dr[1]]
                        print(vals[1:])
                        data = struct.pack('BBBBB', *vals)
                        ser.write(data)
                        sleep(0.1)
    except KeyboardInterrupt:
        print('exiting...')

https://github.com/electronut/pp/tree/master/arduino-laser/laser.py
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        # shut off motors
        vals = [ord('H'), 0, 1, 0, 1]
        data = struct.pack('BBBBB', *vals)
        ser.write(data)
        ser.close()

# get pyaudio input device
def getInputDevice(p):
    index = None
    nDevices = p.get_device_count()
    print('Found %d devices. Select input device:' % nDevices)
    # print all devices found
    for i in range(nDevices):
        deviceInfo = p.get_device_info_by_index(i)
        devName = deviceInfo['name']
        print("%d: %s" % (i, devName))
    # get user selection
    try:
        # convert to integer
        index = int(input())
    except:
        pass

    # print the name of the chosen device
    if index is not None:
        devName = p.get_device_info_by_index(index)["name"]
        print("Input device chosen: %s" % devName)
    return index

# FFT of live audio
def fftLive(ser):
    # initialize pyaudio
    p = pyaudio.PyAudio()

    # get pyAudio input device index
    inputIndex = getInputDevice(p)

    # set FFT sample length
    fftLen = 2**11
    # set sample rate
    sampleRate = 44100

    print('opening stream...')
    stream = p.open(format = pyaudio.paInt16,
                    channels = 1,
                    rate = sampleRate,
                    input = True,
                    frames_per_buffer = fftLen,
                    input_device_index = inputIndex)
    try:
        while True:
            # read a chunk of data
            data  = stream.read(fftLen)
            # convert to numpy array
            dataArray = numpy.frombuffer(data, dtype=numpy.int16)
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            # get FFT of data
            fftVals = numpy.fft.rfft(dataArray)*2.0/fftLen
            # get absolute values of complex numbers
            fftVals = numpy.abs(fftVals)
            # average 3 frequency bands: 0-100 Hz, 100-1000 Hz and 1000-2500 Hz
            levels = [numpy.sum(fftVals[0:100])/100,
                      numpy.sum(fftVals[100:1000])/900,
                      numpy.sum(fftVals[1000:2500])/1500]

            # the data sent is of the form:
            # 'H' (header), speed1, dir1, speed2, dir2
            vals = [ord('H'), 100, 1, 100, 1]

            # speed1
            vals[1] = int(5*levels[0]) % 255
            # speed2
            vals[3] = int(100 + levels[1]) % 255

            # dir
            d1 = 0
            if levels[2] > 0.1:
                d1 = 1
            vals[2] = d1
            vals[4] = 0

            # pack data
            data = struct.pack('BBBBB', *vals)
            # write data to serial port
            ser.write(data)
            # a slight pause
            sleep(0.001)
    except KeyboardInterrupt:
        print('stopping...')
    finally:
        print('cleaning up')
        stream.close()
        p.terminate()
        # shut off motors
        vals = [ord('H'), 0, 1, 0, 1]
        data = struct.pack('BBBBB', *vals)
        ser.write(data)
        # close serial
        ser.flush()
        ser.close()

# main method
def main():
    # parse arguments
    parser = argparse.ArgumentParser(description='Analyzes audio input and 
sends motor control information via serial port')
    # add arguments
    parser.add_argument('--port', dest='serial_port_name', required=True)
    parser.add_argument('--mtest', action='store_true', default=False)
    parser.add_argument('--atest', action='store_true', default=False)
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    args = parser.parse_args()

    # open serial port
    strPort = args.serial_port_name
    print('opening ', strPort)
    ser = serial.Serial(strPort, 9600)
    if args.mtest:
        manualTest(ser)
    elif args.atest:
        autoTest(ser)
    else:
        fftLive(ser)
        
# call main function
if __name__ == '__main__':
    main()

running the Program
To test the project, assemble the hardware, connect the Arduino to the 
computer, and upload the motor driver code into the Arduino. Make sure 
the battery pack is connected and that your laser pointer is on and project-
ing on a flat surface like a wall. I recommend testing the laser display part 
first by running the following program. (Don’t forget to change the serial 
port string to match your computer!) 

$ python3 laser.py --port /dev/tty.usbmodem411 --atest
('opening ', '/dev/tty.usbmodem1411')
staring automatic test...
[25, 0, 25, 0]
[35, 0, 25, 0]
[45, 0, 25, 0]
...

This test runs both motors through various combinations of speeds and 
direction. You should see different laser patterns projected onto your wall. 
To stop the program and the motors, press ctrl-C.

If the test succeeds, you’re ready to move on to the real show. Start play-
ing your favorite music on your computer and run the program as follows. 
(Again, watch that serial port string!) 

$ python3 laser.py --port /dev/tty.usbmodem411
('opening ', '/dev/tty.usbmodem1411') 
Found 4 devices. Select input device: 
0: Built-in Microph 
1: Built-in Output
2: BoomDevice
3: AirParrot
0
Input device chosen: Built-in Microph
opening stream...
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You should see the laser display produce lots of interesting patterns that 
change in time with the music, as shown in Figure 13-10.

Figure 13-10: The complete wiring of the laser display  
and a pattern projected on the wall

summary
In this chapter, you upped your Python and Arduino skills by building a 
more complex project. You learned how to control motors with Python and 
Arduino, and used numpy to get the FFT of audio data, serial communica-
tions, and even lasers!

experiments!
Here are some ways you can modify this project:

1. The program used an arbitrary scheme to convert the FFT values 
into motor speed and direction data. Try changing this scheme. For 
example, experiment with different frequency bands and criteria for 
changing motor directions.
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2. In this project, you converted frequency information gathered from 
the audio signal to motor speed and direction. Try making the motors 
move according to the overall “pulse” or volume of the music. For this, 
you can compute the root mean square (RMS) value of the amplitude of 
the signal. This computation is similar to the FFT calculation. Once 
you read in a chunk of audio data and put it into a numpy array x, you can 
compute the RMS value as follows:

rms = numpy.sqrt(numpy.mean(x**2))

Also, remember that the amplitude in your project was expressed 
as a 16-bit signed integer, which can have a maximum value of 32,768 
(a useful number to keep in mind for normalization). Use this RMS 
amplitude in conjunction with the FFT to generate a greater variation 
of laser patterns.

3. In the project, you rather crudely used some tape to keep the laser 
pointer on to test and run your hardware setup. Can you find a better 
way to control the laser? Read up about optoisolators and relays,1 which 
are devices you can use to switch external circuits on and off. To use 
these, you first need to hack your laser pointer so it can be toggled by 
an external switch. One way to do so is to glue the button of the laser 
pointer to the ON position permanently, remove the batteries, and 
solder two leads onto the battery contacts. Now you can switch the laser 
pointer on and off manually using these wires and the laser pointer’s 
batteries. Next, replace this scheme with a digital switch by wiring the 
laser pointer through a relay or optoisolator and switching it on using a 
digital pin on your Arduino. If you use an optoisolator, you can toggle 
the laser on and off directly with the Arduino. If you’re using a relay, 
you will also need a driver, usually in the form of a simple transistor-
based circuit. 

Once you have this set up, add some code so that when the Python 
program runs, a serial command is sent to the Arduino to switch on 
the laser pointer before the show starts.

1. “Relays and Optoisolators,” What-When-How, http://what-when-how.com/8051-microcontroller/
relays-and-optoisolators/.

http://what-when-how.com/8051-microcontroller/relays-and-optoisolators/
http://what-when-how.com/8051-microcontroller/relays-and-optoisolators/
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w e a t h e r  m o n i t o r

When you find that you need more com-
putational power or support for peripherals 

such as USB or high-definition multimedia inter-
face (HDMI) video, you leave the realm of micro-

controllers like the Arduino and enter the computer 
realm. The Raspberry Pi is a tiny computer that can 
perform high-level tasks such as these quite well, espe-
cially when compared to the Arduino. 

Like the Arduino, the Raspberry Pi is used in numerous interesting 
projects. Although it can fit in the palm of your hand, it’s a full computer 
(you can connect a monitor and keyboard to it), which has made it popular 
among educators and makers. 

In this chapter, you’ll use the Raspberry Pi together with a tempera-
ture and humidity sensor (DHT11) to build a web-based temperature- and 
humidity-monitoring system. The code you run on the Pi will start the 
Bottle web server, which will listen for incoming connections. When you 
access the Pi’s Internet Protocol (IP) address on the local network, the 
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Bottle server should serve a web page containing a chart of the weather 
data. The handler on the Pi will communicate with the DHT11 sensor, 
retrieve data, and return it to the client, which will use the flot library 
to plot the sensor data in the browser. You’ll also provide web-based con-
trol for a light-emitting diode (LED) attached to the Raspberry Pi. (This 
is just to demonstrate how you can control external devices via the Web 
using the Pi.)

n o t e  We’ll use Python 2.7 in this project. The Raspbian OS on the Raspberry Pi comes 
with Python 2.7 (run as python on shell) and Python 3 (run as python3 on shell) 
installed. The code, as written, is com patible with both.

the hardware
Like any laptop or desktop computer sold today, a Pi has a central process-
ing unit (CPU), random access memory (RAM), USB ports, video output, 
audio output, and network connectivity. But unlike most computers, the Pi 
is cheap: about $35. In addition, the Pi can easily interface with external 
hardware, thanks to its onboard general-purpose input/output (GPIO) 
pins, making it ideal for all kinds of embedded hardware projects. You’ll 
connect it up with a DHT11 temperature and humidity sensor to monitor 
your environment.

The DHT11 Temperature and Humidity Sensor
The DHT11 (see Figure 14-1) is a popular sensor that measures temperature 
and humidity. It has four pins—VDD (+), GND (−), DATA, and a fourth 
that is not used. The DATA pin connects to a microcontroller (in this case, 
a Raspberry Pi), and both input and output run through this pin. You’ll 
use the Adafruit Python library Adafruit_Python_DHT to communicate with a 
DHT11 to retrieve temperature and humidity data.

Figure 14-1: The DHT11 temperature  
and humidity sensor
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The Raspberry Pi
As I write this, three models of Raspberry Pi are available: the Raspberry  
Pi 1 Model A+, the Raspberry Pi 1 Model B+, and the Raspberry Pi 2  
Model B. For this project, I used an older Raspberry Pi Model B Rev 2,  
but the pin numbers used in this project are compatible across all models, 
and the code will work on any of the models without changes.

Figure 14-2 shows a Raspberry Pi Model B computer that has two USB 
ports, an HDMI connector, a composite video output jack, an audio output 
jack, a micro USB port for power supply, an Ethernet port, and 26 GPIO 
pins arranged as two columns of 13 pins each. It also has an SD card slot 
on the bottom side of the board (not shown). The Raspberry Pi uses a 
Broadcom BCM2835 chip, which has an ARM CPU that runs at 700 MHz 
and consumes very little power. (This explains why the Pi doesn’t need any 
giant heat sinks to cool it down, like a desktop computer does). Model B 
also has 512MB of SDRAM. Most of these details are not important for 
this project, but they might come in handy if you want to impress folks with 
all the specs of your latest pocket computer.

Figure 14-2: The Raspberry Pi Model B
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Setting Up Your Pi
Unlike the Arduino, you can’t just plug the Raspberry Pi in to your computer 
and start coding. As a full-fledged computer, the Pi needs an operating 
system and a few peripherals. At a minimum, I suggest the peripherals shown 
in Figure 14-3.

•	 An 8GB or higher-capacity SD card with a suitable operating system

•	 A Pi-compatible USB Wi-Fi adapter

•	 A Pi-compatible power supply (The official recommendation is to use 
a 5V 1200 mA supply, or a 5V 2500 mA supply if you need to use all the 
USB ports.)

•	 A case to protect your precious Pi

•	 A keyboard and mouse (Consider a wireless combination that takes up 
only a single USB port for convenience.)

•	 A composite video cable or an HDMI cable (See Appendix C for more 
on using an HDMI cable with the Pi.)

Pi case

Pi-compatible USB 
Wi-Fi adapter

8GB or higher-capacity SD card

Pi-compatible power 
supply

Keyboard and mouse

Composite video cable

Figure 14-3: Recommended set of Raspberry Pi peripherals

n o t e   Be sure to check the list of peripherals known to work with the Pi at http://elinux 
.org/RPI_VerifiedPeripherals before purchasing. 

http://elinux.org/Rpi_VerifiedPeripherals
http://elinux.org/Rpi_VerifiedPeripherals
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Installing and configuring software
Now it’s time to set up your Raspberry Pi and get it ready for Python. I’ll cover 
the required steps briefly in the following section, but you should watch the 
setup videos available at the Raspberry Pi Foundation’s “Getting Started with 
NOOBS” page (http://www.raspberrypi.org/help/noobs-setup/) before installing.

The Operating System
Your Pi’s operating system and files will reside on an external SD card. 
Although you have your choice of several operating systems, I suggest 
installing Raspbian. The operating system needs to be installed in a 
particular way, and rather than bore you here with the details (which 
may well change), I’ll ask you to take a look at “RPi Easy SD Card Setup” 
on the Linux wiki at http://elinux.org/RPi_Easy_SD_Card_Setup or the 
“Using NOOBS” instructions at the same link, which is a bit more 
beginner-friendly.

Initial Configuration
Once you’ve installed your operating system, it’s time for the first boot. 
Plug in your formatted SD card, hook up a composite video cable to a TV 
or monitor, attach the keyboard and mouse, and connect the Pi to the power 
supply. When the Pi boots, a program called raspi-config should start, 
and you should see various configuration options. (You’ll find documen-
tation for raspi-config at the Raspberry Pi Foundation’s website: https://
www. raspberrypi.org/documentation/configuration/raspi-config.md). Modify the 
configuration as follows:

1. Select Expand Filesystem to make use of the full SD card.

2. Select Enable Boot to Desktop/Scratch and then select Desktop.

3. Select Change Time Zone and set your time zone under 
Internationalization Options.

4. Go to Advanced Options and enable Overscan.

5. Go to SSH and enable remote command line access in the Advanced 
Options menu by choosing the Enable or Disable SSH Server option.

Now select Finish; the Pi should reboot and display a desktop.

Wi-Fi Setup
You’ll connect your Pi wirelessly in this project. Assuming that you installed 
a compatible Wi-Fi adapter (after consulting the http://elinux.org/ site), 
Raspbian should automatically recognize the adapter when you plug it in. 
Assuming that all goes well, you’ll set up a static IP address by editing the 
network configuration file using the built-in Nano editor. (Nano has 

http://www.raspberrypi.org/help/noobs-setup/
http://elinux.org/RPi_Easy_SD_Card_Setup
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
http://elinux.org
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a bare-bones UI, which can take some getting used to. The most impor-
tant thing to remember is to press ctrl-X and enter Yes to save your file 
and exit.)

You’ll run the commands in a terminal. Open LXTerminal (it should 
be installed with Raspbian) and enter the following:

$ sudo nano /etc/network/interfaces

This command opens the interfaces file, which you’ll use to configure 
the network settings, as shown here: 

auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet static
address 192.x.x.x
netmask 255.255.255.0
gateway 192.x.x.x

Add or modify the address, netmask, and gateway lines at the end of the 
file to suit your local network. Enter the netmask for your network (likely 
255.255.255.0), enter your network’s gateway (run ipconfig on Linux from 
a Linux terminal; press windows and R keys and then run ipconfig /all on 
Windows; or choose System Preferences4Network on OS X, and give your 
Pi a static network IP address that’s different from that of any other devices 
on your network. 

Now connect the Pi to your Wi-Fi network using the WiFi Config util-
ity; you should see a shortcut for it on the desktop. (If you get stuck, try 
the Adafruit tutorials at https://learn.adafruit.com/. If all goes well, your Pi 
should connect to the Internet with the built-in browser Midori.)

Setting Up the Programming Environment
Next you’ll install your development environment, including the RPi.GPIO 
package needed to talk to external hardware, the Bottle web framework, 
and the tools needed to install other Python packages on your Raspberry Pi. 
Make sure you’re connected to the Internet and run these commands in a 
terminal, one at a time:

$ sudo apt-get update
$ sudo apt-get install python-setuptools
$ sudo apt-get install python-dev
$ sudo apt-get install python-rpi.gpio
$ sudo easy_install bottle 

https://learn.adafruit.com/
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Now, download the latest version of the flot JavaScript plotting library 
from http://www.flotcharts.org/, expand it to create the flot directory, and 
copy this directory into the same folder as your program.

$ wget http://www.flotcharts.org/downloads/flot-x.zip
$ unzip flot-x.zip
$ mv flot myProjectDir/

Next, install the Adafruit_Python_DHT library (https://github.com/adafruit/
Adafruit_Python_DHT/), which you’ll use to retrieve data from the DHT11 
sensor attached to your Pi, by running these commands in a terminal:

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
$ cd Adafruit_Python_DHT
$ sudo python setup.py install

The Raspberry Pi should now be set up with all the software you need 
to build your weather monitor.

Connecting via SSH
Rather than connect your Pi to a monitor and control it using a connected 
mouse and keyboard, it’s much easier to work with the Pi by logging in to it 
from a desktop or laptop. Linux and OS X have built-in support for this sort 
of thing, in the form of Secure Shell (SSH). If you’re using Windows, install 
PuTTY to connect to the Pi. 

The following listing shows a typical SSH session:

u moksha:~ mahesh$ ssh pi@192.168.4.32
v pi@192.168.4.32's password: 
w pi@raspberrypi ~ $ whoami

pi
pi@raspberrypi ~ $ 

In this session, at u, I’ve logged in to the Pi from my computer by 
entering the ssh command, the Pi’s default username (pi), and its IP 
address as ssh username@ip_address. When you enter ssh v, you should be 
prompted for a password. The default is raspberry. 

Once you think you’ve logged in to the Pi, make sure by entering the 
whoami command w. If the response is pi as shown earlier, you have logged 
in properly. 

n o t e  It’s a good idea to change your Pi’s username and password to make it more secure. 
For more hints on working remotely with the Raspberry Pi, see Appendix C.

http://www.flotcharts.org
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
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The Bottle Web Framework
To monitor and control the Pi via a web interface, you’ll need to have it run 
a web server. You’ll use Bottle, a Python web framework with a simple inter-
face. (In fact, the entire library consists of a single source file named bottle.py.) 
Here’s the code needed to serve a simple web page using Bottle:

from bottle import route, run

@route('/hello')
def hello():
    return "Hello Bottle World!"

run(host='192.168.x.x', port=xxxx, debug=True)

This code uses the Python decorator @route to define a route to a URL 
or path for the client to use to send a data request. The defined route calls 
the routing function, which returns a string. The run() method starts the 
Bottle server, which can now accept connections from clients. (Be sure to 
supply your own IP address and port number.) Note that I’ve set the debug 
flag to True to make it easier to diagnose problems.) 

Now open a browser on any computer connected to the local network 
and enter http://192.168.4.4:8080/hello. Connect to your Pi and Bottle should 
serve you a web page with the line “Hello Bottle World!”. With just a few 
lines of code, you’ve created a web server. 

The client will make requests to the server (Bottle, running on the Pi) 
using the Asynchronous JavaScript and XML (AJAX) framework. To make 
your AJAX calls easy to write, you’ll use the popular jQuery library.

Py t hon deCor ators

A decorator in Python is @ syntax that takes a function as an argument and 
returns another function . A decorator provides a convenient way to “wrap” one 
function using another function . For example, this code

@wrapper
def myFunc():
    return 'hi'

is equivalent to doing the following:

myFunc = wrapper(myFunc)

Functions are first-class objects in Python that can be passed like 
variables .
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Plotting with flot
Now let’s look at how you’ll plot your data. The flot library has an easy-to-
use and powerful API that lets you create nice-looking graphs with minimal 
code. Basically, you set up some Hypertext Markup Language (HTML) 
to hold a chart and provide an array of values to plot, and Flot handles the 
rest, as shown in this example. (You’ll find this code in the file simple-flot.html 
in the book’s code repository.)

<html>
<head>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <title>SimpleFlot</title>  

u  <style>
    .demo-placeholder {
        width: 80%;
        height: 80%;
    }
  </style>

v   <script language="javascript" type="text/javascript" 
          src="flot/jquery.js"></script>
  <script language="javascript" type="text/javascript" 
          src="flot/jquery.flot.js"></script>
  <script language="javascript" type="text/javascript">

w   $(document).ready(function() {
       // create plot

x     var data = [];
       for(var i = 0; i < 500; i ++) {

y        data.push([i, Math.exp(-i/100)*Math.sin(Math.PI*i/10)]);
       }

z     var plot = $.plot("#placeholder", [data]);
    });
</script>
</head>

<body>
  <h3>A Simple Flot Plot</h3>
  <div class="demo-container">

{   <div id="placeholder" class="demo-placeholder"></div>
  </div>
</body>
</html>

At u, you define a CSS class (demo-placeholder) to set the width and 
height of the placeholder element to hold your plot (which you’ll define in 
the body of the document). At v, you declare the JavaScript files for the 
libraries you’ll use in this HTML file: jquery.js and flot.js. (Note that jQuery 
comes bundled with flot, so you don’t need to download it separately. Also, 
ensure that you put the top-level flot directory into the same directory that 
contains all the source code for this project.)
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Next, you use JavaScript to generate values to plot. At w, you use the 
jQuery method $(document).ready() to define a function to be executed by 
the browser as soon as the HTML file is loaded. Inside that function, at x, 
you declare an empty JavaScript array and then loop 500 times, adding a 
value of the form [i, y] to this array y. Each value represents the x- and 
y-coordinates of this interesting function (chosen somewhat arbitrarily).

y x e x
x

( ) = 





−
100 2

10
sin

π , for x in the range [0, 500]

At z, you call plot() from the flot library to do the plotting. At {, the 
plot() function takes as input the id of the HTML element that contains the 
plot (the placeholder element). When you load the resulting HTML file in 
a browser, you should see the plot shown in Figure 14-4.

Figure 14-4: A sample plot created with flot

I used flot’s default settings here, but you can customize your flot plots 
extensively by adjusting colors, using data points instead of lines, adding 
legends and titles, making the plot interactive, and more. (You’ll see how 
when you design the chart for the weather data in “Plotting the Data” on 
page 285.)

Shutting Down the Pi
Never abruptly disconnect the power supply to a running Raspberry Pi or 
you’ll likely corrupt your filesystem, making the Pi unbootable. To shut 
down the Pi’s user interface if you’re connected to it directly or from your 
computer, enter the following via SSH:

$ sudo shutdown -h now
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n o t e  Before you run the previous command, you need to be sure that you are logged in to 
your Pi. Otherwise, you may end up shutting down your host computer—if you’re 
running Linux, for instance.

A few seconds after you enter the shutdown command, the Pi’s yellow indi-
cator LED should blink exactly 10 times. Now you can pull the plug safely. 

Building the hardware
In addition to the Pi and the peripherals mentioned earlier, you’ll need one 
of each of the following, as well as hookup wires: 

•	 DHT11 sensor

•	 4.7k ohm resistor

•	 100 ohm resistor

•	 Red LED

•	 Breadboard

Figure 14-5 shows how to wire everything up. The VDD pin of the 
DHT11 is connected to the +5V (pin #2 on the Pi), the DHT11 DATA pin 
is connected to pin #16 on the Pi, and the DHT11 GND pin is connected to 
GND on the Pi (pin #6). A 4.7k ohm resistor is connected between DATA 
and VDD. The cathode (negative) of the LED is connected to GND via a 
100 ohm resistor, and the anode (positive) is connected to pin #18 of the Pi. 

1
(VDD)

2
(DATA)

3
(unused)

4
(GND)

DHT11

4.7 kΩ

+5 V

pin #6 (GND)

pin #16 (board)

pin #18 (board)

100 Ω

LED

pin #6 (GND)

Figure 14-5: A schematic of the connections among the Raspberry Pi, the  
DHT11 circuit, and the LED
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You can use a solderless breadboard to connect the DHT11 and LED 
circuits and test the setup, as shown in Figure 14-6. Then move the setup to 
a custom enclosure once you have it working to your satisfaction.

Figure 14-6: The Raspberry Pi, DHT11, and LED connected with a breadboard

the code
Now, you’ll develop the code to run on the Raspberry Pi. (If you want to see 
the full project code, skip ahead to “The Complete Code” on page 290.) 
Here’s the main() function:

def main():
    print 'starting piweather...'
    # create parser

u     parser = argparse.ArgumentParser(description="PiWeather...")
    # add expected arguments
    parser.add_argument('--ip', dest='ipAddr', required=True)
    parser.add_argument('--port', dest='portNum', required=True)

    # parse args
    args = parser.parse_args()

    # GPIO setup
v     GPIO.setmode(GPIO.BOARD)
w     GPIO.setup(18, GPIO.OUT)
x     GPIO.output(18, False)

    # start server
y     run(host=args.ipAddr, port=args.portNum, debug=True)

At u, you set up a command line argument parser with two required 
arguments: --ip for the IP address where the server should be started and 
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--port for the server port number. At v, you start the GPIO pin setup. You 
use BOARD mode to indicate you’ll be using the pin-numbering convention 
based on the board’s physical layout. At w, you set up pin #18 as an output 
because you plan to write data out to it to control the LED, and at x, you 
set the pin value to False so the LED is turned off when you start. Then you 
start Bottle by supplying the IP address and port number, and set debug to 
True to monitor any warning messages y. 

Handling Sensor Data Requests
Now let’s take a quick look at the function that handles sensor data requests:

u @route('/getdata', method='GET')
v def getdata():
w    RH, T = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 23)

   # return dictionary
x    return {"RH": RH, "T": T}

This method defines a route called /getdata u. When the client accesses 
the URL /getdata defined by this route, the getdata() method is called v, 
which uses the Adafruit_DHT module to retrieve humidity and temperature 
data w. At x, the retrieved data is returned as a dictionary, which will be 
available on the client as a JavaScript Object Notation (JSON) object. JSON 
objects consist of lists of name-value pairs that can be read in as objects. In 
this case, getdata() returns a JSON object with two pairs: one for the humid-
ity reading (RH) and one for temperature (T). 

Plotting the Data
The plot() function handles the client’s plot requests. The first part of this 
function defines the HTML <head> section, which sets the Cascading Style 
Sheets (CSS) style and loads the necessary JavaScript code, as shown here:

@route('/plot')
def plot():

u     return '''
<html>
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>PiWeather</title>
    <style>
    .demo-placeholder {
    width: 90%;
    height: 50%;
    }
    </style>
         <script language="javascript" type="text/javascript" 
       src="jquery.js"></script>
         <script language="javascript" type="text/javascript" 
       src="jquery.flot.js"></script>
         <script language="javascript" type="text/javascript" 
       src="jquery.flot.time.js"></script>
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The plot() function is a Bottle route for the /plot URL, which means 
that the plot() method will be called when you connect to this URL. At u, 
plot() returns the entire HTML data as a single string, which will be dis-
played by the client’s web browser. The initial lines in the listing are the 
HTML headers, CSS size declaration for the plot, and code to include the 
flot library—all similar to the setup that produces the flot chart example 
in Figure 14-4. 

The <body> element of the code shows the overall structure of the HTML.

<body>
        <div id="header">

u             <h2>Temperature/Humidity</h2>
        </div>

        <div id="content">
            <div class="demo-container">

v                 <div id="placeholder" class="demo-placeholder"></div>
            </div>

w         <div id="ajax-panel"> </div>
        </div>
    <div>

x         <input type="checkbox" id="ckLED" value="on">Enable Lighting.
y         <span id="data-values"> </span>

    </div>  

</body>
</html>

At u, you simply add a title for the plot. Add a <placeholder> element at v, 
which will be filled later by the flot JavaScript code. At w, you define an 
HTML element with the ID ajax-panel, which will display any AJAX errors, 
and at x, you create a checkbox element with the ID ckLED, which controls 
the LED connected to the Raspberry Pi. Finally, you create another HTML 
element with the ID data-values y, where you display sensor data when the 
user clicks a data point in the plot. The JavaScript code will use all of these 
IDs to access and modify the corresponding elements.

Now let’s dive in to the embedded JavaScript code that initiates sensor 
data requests as well as toggles the LED on and off. This code goes into the 
<script language="javascript"...> tag under the <head> of the HTML data.

u $(document).ready(function() {

    // plot options
v     var options = {

        series: {
            lines: {show: true},
            points: {show: true}
                },
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w         grid: {clickable: true},
x         yaxes: [{min: 0, max: 100}],

        xaxes: [{min: 0, max: 100}],
    };
    
    // create empty plot

y     var plot = $.plot("#placeholder", [[]], options);

The ready() function at u is called by the browser when the HTML 
data has been fully loaded. At v, you declare an options object to customize 
your plot. In this object, you tell the plot to display both lines and points, 
and at w, you allow the plot grid to be clicked (for querying values). You 
also set the axes limits at x. At y, create the actual plot by calling plot() with 
three arguments: the ID of the element in which you want the plot to appear, 
an array of values (which is empty to start), and the options object you just 
set up. 

Next let’s look at the JavaScript code that gets the sensor data:

    // initialize data arrays
u     var RH = [];

    var T = []; 
    var timeStamp = [];    
    // get data from server

v     function getData() {
        // AJAX callback

w         function onDataReceived(jsonData) {    
x             timeStamp.push(Date());

            // add RH data
y             RH.push(jsonData.RH);

            // removed oldest
z             if (RH.length > 100) {

                RH.splice(0, 1);
            }
            // add T data
            T.push(jsonData.T);
            // removed oldest
            if (T.length > 100) {
                T.splice(0, 1);
            }

{             s1 = [];
            s2 = [];
            for (var i = 0; i < RH.length; i++) {
                s1.push([i, RH[i]]);
                s2.push([i, T[i]]);
            }
            // set to plot

|             plot.setData([s1, s2]);
            plot.draw();
            }



288   Chapter 14

        // AJAX error handler
}         function onError(){

            $('#ajax-panel').html('<p><strong>Ajax error!</strong> </p>');
        }
        
        // make the AJAX call

~         $.ajax({
            url: "getdata",
            type: "GET",
            dataType: "json",
            success: onDataReceived,
            error: onError
        });        
    }

At u, you initialize empty arrays for the temperature and humidity 
values, and a timeStamp array that stores the time when each value is col-
lected. You define a getData() method at v that you’ll call periodically 
using a timer. At w, you define a onDataReceived() method that you’ll set as 
a callback method for the AJAX call. Because in JavaScript you can define 
functions within functions that can be used like regular variables, you can 
define onDataReceived() within the getData() function and then pass it to the 
AJAX call as a callback function.

The onDataReceived() function stores a timestamp for the data point  
at x by creating a JavaScript Date object. Data from the server is passed into 
OnDataReceived() using the jsonData object, and at y, you push the tempera-
ture data from this object into an array. At z, you remove the oldest element 
in the array if the number of elements exceeds 100, which produces a scroll-
ing graph similar to the one you created for the Arduino light sensor project 
in Chapter 12. You process the humidity data the same way. 

At {, the collected data is formatted to make it suitable to be passed 
to the plot() method. Since you’re plotting two variables simultaneously, you 
need an array with three layers of the form: 

[[[i0,RH0], [i1,RH1],...],[[i0,T0],[i1,T1]] 

The data is set and plotted at |.
At }, you define an error callback, which AJAX will use in case of a 

failure to display errors, using the HTML element with the ID ajax-panel 
that you set up previously. At ~, you make the actual AJAX call, which speci-
fies the URL getdata, the Bottle route. The call uses the HTTP GET() method 
to request data from the server in the json format. The AJAX setup call 
sets the OnDataReceived() method as the success callback and onError() as 
the error callback. This AJAX call returns immediately, and the callback 
methods are activated asynchronously when data becomes available.

The update() Method
Now let’s look at the update() method that calls getData() every second.
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        // define an update function
        function update() {
            // get data

u             getData();
            // set timeout

v             setTimeout(update, 1000);
     }

     // call update
         update();

The update() method first calls getData() at u and then uses the Java-
Script setTimeout() method at v to call itself after 1,000 milliseconds. As 
a result, getData() is called every second to request sensor data from the 
server. 

The JavaScript Handler for the LED
Now let’s look at the JavaScript handler for the LED checkbox, which sends 
an AJAX request to the web server.

     // define the click handler for the LED control button
u      $('#ckLED').click(function() {
v          var isChecked = $("#ckLED").is(":checked") ? 1:0;
w          $.ajax({

             url: '/ledctrl',
             type: 'POST',
             data: { strID:'ckLED', strState:isChecked }
         });
      });

At u, you define a click handler for the checkbox with the ID ckLED that 
you created earlier in the HTML. This click handler function is called 
each time the user clicks the checkbox. The function stores the state of the 
checkbox v; then the code at w calls AJAX with the URL /ledctrl and the 
HTTP request type POST, which sends the checked state as data.

The server-side handler for this AJAX request sets the GPIO pin of the 
Pi to on or off as per the request.

u @route('/ledctrl', method='POST')
def ledctrl():

v     val = request.forms.get('strState')
w     on = bool(int(val))
x     GPIO.output(18, on) 

At u, you define the Bottle route for the URL /ledctrl, which is a decora-
tor for the ledctrl() method that handles this request. At v, you use 
the Bottle request object to access the string value of the strState param-
eter sent by the client code, which is converted to a Boolean at w. Use the  
GPIO.output() method on pin #18 to toggle the LED connected to this pin 
on or off x.
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Adding Interactivity
You also want to provide some interactivity for the plot. The flot library pro-
vides a way for users to click data points to get values, which you enabled ear-
lier by passing clickable:true in options when you called the plot() function. 
Here, you define the function to be called when a data point is clicked:

     $("#placeholder").bind("plotclick", function (event, pos, item) {
          if (item) {

u               plot.highlight(item.series, item.datapoint);
v               var strData = ' [Clicked Data: ' + 

                            timeStamp[item.dataIndex] + ': T = ' + 
                            T[item.dataIndex] + ', RH = ' + RH[item.dataIndex]
                            + ']';

w               $('#data-values').html(strData);
          }
     });
});

</script>
</head>

This function calls the flot highlight() method at u to draw a ring 
around the point clicked. At v, it prepares a string to be displayed in 
the HTML element with the ID data-values. When a data point is clicked, 
flot passes in an item object to the function, which has a member called 
dataIndex. You use this index to retrieve the relevant data from the time-
stamp, temperature, and humidity arrays defined in the ready() function. 
Finally, the string is added to the HTML element w.

This concludes the embedded JavaScript in your Python code, but 
you need one more Bottle route to find the JavaScript files that the web 
page needs, as shown here: 

@route('/<filename:re:.*\.js>')
def javascripts(filename):
    return static_file(filename, root='flot')

This code tells the Bottle server to find these files in the subdirectory 
flot/ at the same level as your program. 

the complete code
You can find the complete code listing for this project at https://github.com/
electronut/pp/tree/master/piweather/piweather.py.

from bottle import route, run, request, response
from bottle import static_file
import random, argparse
import RPi.GPIO as GPIO
from time import sleep  
import Adafruit_DHT

https://github.com/electronut/pp/tree/master/piweather
https://github.com/electronut/pp/tree/master/piweather
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@route('/hello')
def hello():
    return "Hello Bottle World!"

@route('/<filename:re:.*\.js>')
def javascripts(filename):
    return static_file(filename, root='flot')

@route('/plot')
def plot():
    return '''
<html>
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>PiWeather</title>
    <style>
     .demo-placeholder {
    width: 90%;
    height: 50%;
    }
    </style>
    <script language="javascript" type="text/javascript" 
       src="jquery.js"></script>
    <script language="javascript" type="text/javascript" 
       src="jquery.flot.js"></script>
    <script language="javascript" type="text/javascript" 
       src="jquery.flot.time.js"></script>
    <script language="javascript" type="text/javascript">

$(document).ready(function() {

    // plot options
    var options = {
        series: {
            lines: {show: true},
            points: {show: true}
                },
        grid: {clickable: true},
        yaxes: [{min: 0, max: 100}],
        xaxes: [{min: 0, max: 100}],
    };
    
    // create empty plot
    var plot = $.plot("#placeholder", [[]], options);

    // initialize data arrays
    var RH = [];
    var T = []; 
    var timeStamp = [];    
    // get data from server
    function getData() {
        // AJAX callback
        function onDataReceived(jsonData) {    
            timeStamp.push(Date());
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            // add RH data
            RH.push(jsonData.RH);
            // removed oldest
            if (RH.length > 100) {
                RH.splice(0, 1);
            }
            // add T data
            T.push(jsonData.T);
            // removed oldest
            if (T.length > 100) {
                T.splice(0, 1);
            }
            s1 = [];
            s2 = [];
            for (var i = 0; i < RH.length; i++) {
                s1.push([i, RH[i]]);
                s2.push([i, T[i]]);
            }
            // set to plot
            plot.setData([s1, s2]);
            plot.draw();
        }

        // AJAX error handler
        function onError(){
            $('#ajax-panel').html('<p><strong>Ajax error!</strong> </p>');
        }
        
        // make the AJAX call
        $.ajax({
            url: "getdata",
            type: "GET",
            dataType: "json",
            success: onDataReceived,
            error: onError
        });        
     }

     // define an update function
     function update() {
        // get data
        getData();
        // set timeout
        setTimeout(update, 1000);
     }

     // call update
     update();
 
     // define click handler for LED control button
     $('#ckLED').click(function() {
         var isChecked = $("#ckLED").is(":checked") ? 1:0;
         $.ajax({
             url: '/ledctrl',
             type: 'POST',
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             data: { strID:'ckLED', strState:isChecked }
         });
      });

     $("#placeholder").bind("plotclick", function (event, pos, item) {
          if (item) {
              plot.highlight(item.series, item.datapoint);
              var strData = ' [Clicked Data: ' + 
                            timeStamp[item.dataIndex] + ': T = ' + 
                            T[item.dataIndex] + ', RH = ' + RH[item.dataIndex]
                            + ']';
              $('#data-values').html(strData);
          }
     });
});

</script>
</head>

<body>
    <div id="header">
        <h2>Temperature/Humidity</h2>
    </div>

    <div id="content">
        <div class="demo-container">
            <div id="placeholder" class="demo-placeholder"></div>
        </div>
        <div id="ajax-panel"> </div>
    </div>
    <div>
        <input type="checkbox" id="ckLED" value="on">Enable Lighting.
        <span id="data-values"> </span>
    </div>
    
</body>
</html>
'''
    
@route('/getdata', method='GET')
def getdata():
    RH, T = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 23)
    # return dictionary
    return {"RH": RH, "T": T}
    
@route('/ledctrl', method='POST')
def ledctrl():
    val = request.forms.get('strState')
    on = bool(int(val))
    GPIO.output(18, on) 

# main() function
def main():
    print 'starting piweather...'
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    # create parser
    parser = argparse.ArgumentParser(description="PiWeather...")
    # add expected arguments
    parser.add_argument('--ip', dest='ipAddr', required=True)
    parser.add_argument('--port', dest='portNum', required=True)

    # parse args
    args = parser.parse_args()

    # GPIO setup
    GPIO.setmode(GPIO.BOARD)
    GPIO.setup(18, GPIO.OUT)
    GPIO.output(18, False)
    # start server
    run(host=args.ipAddr, port=args.portNum, debug=True)

# call main
if __name__ == '__main__':
    main()

running the Program
Once you’ve connected the Raspberry Pi to the DHT11 and LED circuit, 
SSH into the Pi from your computer and enter the following (substituting 
the IP address and port you have set up for your Pi):

$ sudo python piweather.py --ip 192.168.x.x --port xxx

Now open a browser and enter the IP address and port for your Pi into 
the browser’s address bar in this form:

 http://192.168.x.x:port/plot 

You should see a plot similar to the one in Figure 14-7.

Figure 14-7: The resulting web page and chart from a sample run of piweather .py
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If you click any data point in the graph, the Clicked Data section should 
update to show more information about that point. After 100 points are 
collected, the graph will start scrolling horizontally as new data comes in. 
(Click the Enable Lighting checkbox to toggle the LED on and off.)

summary
In this project, you built a Raspberry Pi–based weather monitor that plots 
temperature and humidity data over a web interface. These were some of 
the concepts covered in this project:

•	 Setting up a Raspberry Pi

•	 Using Raspberry Pi GPIO pins to talk to hardware

•	 Interfacing with the DHT11 temperature and humidity sensor

•	 Creating a web server using the Bottle Python web framework

•	 Making charts using the flot JavaScript library

•	 Building a client-server application

•	 Controlling hardware over a web interface

experiments!
Try refining this project with these modifications:

1. Provide a way to export the sensor data. One simple way would be to 
maintain a list of (T, RH) tuples on the server, then write a Bottle route 
for /export, and, in this method, return the values in CSV format. Modify 
the /plot route so that it includes HTML code to place an Export button 
on the web page. When the button is clicked, have the corresponding 
AJAX code call the export() method on the server, which will send the 
CSV values to be displayed in the browser. These values can then be 
copied or saved by the user from the browser window.

2. The program plots the DHT11 data, but after 100 values, it starts scroll-
ing. What if you want to see historic data over a longer period? One way 
would be to maintain a longer list of (T, RH) tuples on the server and 
then modify the server code to send HTML data with a button and the 
necessary JavaScript code to toggle between plotting the full range of 
data or just the most recent 100 values. How will you retrieve old data 
from before the Pi was switched off? (Hint: write the data to a text file 
when the server exits and load old data when it starts.) To really make 
this project scalable, use a database, such as SQLite.





a
s o f t w a r e  i n s t a l l a t i o n

In this appendix, I will cover how to  
install Python, as well as the external 

modules and code used in the book. Since 
I’ve already covered the installation of several 

Raspberry Pi–specific projects in Chapter 14, I’ll skip 
those instructions here. The projects in this book have 
been tested with both Python 2.7.8 and Python 3.3.3.

Installing source code for the Book’s Projects
You can download source code for the book’s projects from https://github 
.com/electronut/pp/. Use the Download ZIP option at this site to retrieve 
the code.

Once you download and extract the code, you need to add the path to 
the common folder in the downloaded code (generally pp-master/common) 
to your PYTHONPATH environment variable so that modules can find and use 
these Python files. 

https://github.com/electronut/pp
https://github.com/electronut/pp
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On Windows, you can do this by creating a PYTHONPATH environment vari-
able or adding to one if it already exists. On OS X, you can add this line to 
your .profile file in your home directory (or create a file there if needed):

export PYTHONPATH=$PYTHONPATH:path_to_common_folder

Linux users can do something similar to OS X, in their .bashrc, .bash_
profile, or .cshrc/.login as appropriate. You can use the echo $SHELL command 
to see the default shell.

Now, let’s look at how to install Python and the modules used in this 
book on Windows, OS X, and Linux.

Installing on windows 
First, download and install Python from https://www.python.org/download/.

Installing GLFW
For the OpenGL-based 3D graphics projects in this book, you need the 
GLFW library, which you can download at http://www.glfw.org/download.html.

On Windows, after you install GLFW, set a GLFW_LIBRARY environment 
variable (type Edit Environment Variables in the search bar) to the full 
path of the installed glfw3.dll so that your Python binding for GLFW can 
find this library. The path will look something like C:\glfw-3.0.4.bin.WIN32\
lib-msvc120\glfw3.dll. 

To use GLFW with Python, you use a module called pyglfw, which  
consists of a single Python file called glfw.py. You don’t need to install  
pyglfw because it comes with the source code for the book; you can find  
it in the common directory. But just in case you need to install a more 
recent version, here is the source: https://github.com/rougier/pyglfw/.

You also need to ensure that your graphics card drivers are installed on 
your computer. This is a good thing in general since many software programs 
(especially games) make use of the graphics processing unit (GPU). 

Installing Prebuilt Binaries for Each Module
The simplest way to install the necessary Python modules on Windows is to 
get prebuilt binaries. The links for each module are listed here. Download 
the appropriate installers (32 or 64 bit) for each. Depending on your 
Windows setup, you may need to run these installers with administrator 
privileges.

pyaudio 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio

pyserial 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyserial

https://www.python.org/download
http://www.glfw.org/download.html
https://github.com/rougier/pyglfw
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyserial
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scipy 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy  
http://sourceforge.net/projects/scipy/files/scipy/

numpy

http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy  
http://sourceforge.net/projects/numpy/files/NumPy/

pygame 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

Pillow 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pillow  
https://pypi.python.org/pypi/Pillow/2.5.0#downloads

pyopengl

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl

matplotlib

http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib

The matplotlib library depends on dateutil, pytz, pyparsing, and six, and 
you can get those from the following links:

dateutil 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-dateutil

pytz 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pytz

pyparsing 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyparsing

six 
http://www.lfd.uci.edu/~gohlke/pythonlibs/#six

Other Options
You can also build all the required packages yourself on Windows by install-
ing the appropriate compilers. See https://docs.python.org/2/install/index.html 
#gnu-c-cygwin-mingw for a list of compatible compilers. Another option is to 
install the special Python distributions at http://www.scipy.org/install.html, 
which have most of these packages preinstalled. 

Installing on os x
Here are the recommended steps for installing Python and the necessary 
modules on OS X. 

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://sourceforge.net/projects/scipy/files/scipy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://sourceforge.net/projects/numpy/files/NumPy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pillow
https://pypi.python.org/pypi/Pillow/2.5.0#downloads
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl
http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-dateutil
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pytz
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyparsing
http://www.lfd.uci.edu/~gohlke/pythonlibs/#six
https://docs.python.org/2/install/index.html#gnu-c-cygwin-mingw
https://docs.python.org/2/install/index.html#gnu-c-cygwin-mingw
http://www.scipy.org/install.html
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Installing Xcode and MacPorts
The first step is to install Xcode. You can get it through the App Store, or 
if you are running an older version of the operating system, you can get a 
compatible version of Xcode from the Apple developer website at https://
developer.apple.com/. Once you install Xcode, make sure you also have the 
command line tools installed. The next step is to install MacPorts. You can 
refer to the MacPorts guide (http://guide.macports.org/#installing.xcode), 
which has detailed installation instructions to help you with this process.

MacPorts installs its own version of Python, and it’s simplest to just use 
that version for your projects. (OS X also comes with Python built in, but 
installations on top of it are fraught with problems, so it’s best left alone.)

Installing Modules
Once you have MacPorts installed, you can install the required modules for 
the book using the port' command in the Terminal application. 

Use this command in a terminal window to check the versions of Python:

$ port select --list python

If you have multiple Python installations, you can make a particular 
version of Python active for MacPorts using this command (Python ver-
sion 2.7 is selected here):

$ port select --set python python27

Then you can install the required modules. Run these commands one 
by one in a terminal window.

sudo port install py27-numpy
sudo port install py27-Pillow
sudo port install py27-matplotlib
sudo port install py27-opengl
sudo port install glfw
sudo port install py27-scipy
sudo port install py27-pyaudio
sudo port install py27-serial
sudo port install py27-game

MacPorts usually installs its Python in /opt/local/. You can ensure you 
get the right version of Python in a terminal window by setting the PATH 
environment variable in your .profile. Here is how I have it set up:

PATH=/opt/local/Library/Frameworks/Python.framework/Versions/2.7/bin:$PATH
export PATH

This code ensures that the right version of Python is available to run 
from any terminal.

https://developer.apple.com/
https://developer.apple.com/
http://guide.macports.org/#installing.xcode
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Installing on linux
Linux usually comes with Python built in, as well as all the development 
tools needed to build the required packages. On most Linux distributions, 
you should be able to use pip to get the packages required for the book. 
See the following link for instructions on installing pip: http://pip.readthedocs 
.org/en/latest/installing.html. 

You can install a package using pip like this:

sudo pip install matplotlib

The other way to install a package is to download the module source 
distribution for it, which is usually in a .gz or .zip file. Once you unzip 
these files into a folder, you can then install them as follows:

sudo python setup.py install

You need to use one of these methods for each package needed for 
the book.

http://pip.readthedocs.org/en/latest/installing.html
http://pip.readthedocs.org/en/latest/installing.html
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B a s i C  P r a C t i C a l  e l e C t r o n i C s

In this appendix, I briefly cover some basic 
terminology, components, and tools related 

to building electronic circuits. Electronics 
is a branch of engineering that deals with the 

design and construction of electrical circuits that use 
active and passive electrical components. 

This topic is vast, so I am barely going to scratch the surface.1 But 
from a hobbyist or DIY (do-it-yourself) perspective, you don’t need to 
know a whole lot to get started with electronics. You can learn as you build, 
and from my own experience, I can tell you that this is a fun and addictive 
hobby. I hope a quick tour through the following topics will inspire you to 
start reading up on the subject and put you on the path to designing and 
building your own circuits. 

1. For a comprehensive reference on electronics, I recommend Paul Scherz and Simon Monk, 
Practical Electronics for Inventors, 3rd ed. (San Francisco: McGraw-Hill, 2013).
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common components
Most electronic components use materials that fall into the semiconductor 
category. Semiconductors have special electrical properties that make them 
an ideal choice for the construction of electronic devices. 

In this section, we look at some of the most common components used 
in circuits. Figure B-1 shows these components alongside the symbols used 
to represent them in circuit diagrams.

Figure B-1: Common electronic components and their corresponding symbols

Breadboard
A breadboard is a perforated block used for prototyping electronic cir-
cuits. The holes in a breadboard have spring-loaded clips in them and 
are interconnected in a simple way, allowing for easy experimentation. 
Instead of having to solder each connection, you plug in the compo-
nents to the breadboard and use wires to connect them.

Light-Dependent Resistor (LDR)
An LDR is a type of resistor whose resistance decreases with the intensity 
of light falling on it. It is used as a light sensor in electronic circuits.

Integrated Circuit (IC)
An IC is a device that contains a complete electronic circuit. ICs are 
quite small and can contain billions of transistors in a square centimeter. 
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Each IC usually has a specific application in mind, and the data sheet 
from the manufacturer provides the necessary schematics, electrical 
and physical characteristics, and sample applications to aid the user. 
A common IC that you may encounter is the 555, which is used mostly 
as a timer. 

Printed Circuit Board (PCB)
To make an electronic circuit, you need a place to assemble the com-
ponents. You typically do this on a PCB, a board consisting of an insula-
tor with one or more layers of a conductive material (typically copper) 
on top of it. The conductive layer is shaped in such a way that it forms 
the wiring of the circuit. 

The components are mounted onto the PCB either as through-hole 
components or surface-mounted components and soldered to form an 
electrical connection with the conducting layer.

Wires
Not very high-tech, but you can’t make circuits without wires. You’ll 
use copper wires insulated by plastic.

Resistor
A resistor is one of the most common components found in a circuit. A 
resistor is used to decrease current or voltage in a circuit and is speci-
fied in terms of its resistance, which is measured in ohms. For example, 
a 2.7k resistor has a resistance of 2.7 kilohms, or 2,700 ohms. A resistor 
has color-coded bands that indicate its resistance value, and two leads 
that are interchangeable because it has no polarity.

Light-Emitting Diode (LED)
LEDs are the little blinking lights you see in many circuits. An LED is 
a special type of diode, however, so it also has polarity and needs to be 
connected accordingly. It is often used in conjunction with a resistor, 
which limits the current flowing through it so it doesn’t get damaged. 
LEDs of different colors have different minimum “turn-on” voltages. 

Capacitor
A capacitor is a device with two leads that is used to store an electrical 
charge. It is measured in terms of capacitance, which has units of farads. 
A typical capacitor has a capacitance measured in microfarads (μF). 
Capacitors come in polarized and unpolarized versions.

Diode
A diode is an electronic device that lets a current pass only in one direc-
tion. Diodes are commonly used as rectifiers—devices that convert AC 
current to DC. A diode has two leads: an anode and a cathode. That 
means it has polarity, so the two leads need to be matched up correctly 
with the rest of the circuit.
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Transistor
A transistor can be thought of as an electronic switch. A transistor 
can also act as an amplifier of current or voltage. As a basic building 
block of integrated circuits, it is one of the most important electronic 
components. Transistors come in several types, but the most common 
ones are the bipolar junction transistor (BJT) and the metal-oxide- 
semiconductor field-effect transistor (MOSFET). A transistor usually 
has three leads. For the BJT, they are named base, collector, and emitter, 
whereas for a MOSFET, they are named gate, source, and drain. When 
the transistor is used as a switch, the current to the base for the BJT—
or voltage to the gate in the case of MOSFET—is what enables the 
flow of current through the collector and emitter, thus acting as an  
on/off switch for an external load like an LED or a relay.

Battery/Power Supply
Most electronics work on small voltages ranging from 3 to 9 Volts, and 
this voltage can be supplied using batteries or power adapters that plug 
in to a wall AC outlet.

essential tools
In addition to the components just described, you also need some basic 
tools to get started with electronic circuits. Figure B-2 shows what you would 
typically find on the workbench of a hobbyist. Some of these essential tools 
are described next.

Figure B-2: A typical electronics workbench, with a multimeter, a task lamp, clamps, a 
wire stripper, a screwdriver, needle-nose pliers, a loupe, solder, flux, an oscilloscope, and 
a soldering station.
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Multimeter
A multimeter is an instrument used to measure the electrical character-
istics of a circuit, such as voltage, current, capacitance, and resistance. 
It is also often used to measure continuity in a circuit, which indicates 
a continuous flow of current. A multimeter is quite useful when you’re 
trying to debug your circuit. 

Soldering Iron and Accessories
Once you are satisfied that your circuit works on a breadboard, the 
next step is to transfer it to a PCB, and this requires soldering. Soldering 
is the processing of joining two metals using a heated filler metal. The 
filler, or solder, used to contain lead, but these days lead-free solder alloy 
is typically used, which is more environmentally sound. To solder a 
component, place it on the PCB, apply flux (a chemical that makes the 
soldering process easier), and apply the hot solder with the iron. When 
the solder cools, it forms a physical bond and an electrical connection 
between the component and the copper layer.

Oscilloscope
An oscilloscope is an instrument used to measure and display voltages 
from electronic circuits. It is a useful tool for analyzing electrical wave-
forms. For example, you could use it to debug digital data coming out of 
a sensor or measure analog voltage coming out of an audio amplifier. 
It also has other specialized measurement functions like fast Fourier 
transform (FFT) and root mean square (RMS).

Figure B-2 shows some other useful items for building circuits: a multi-
bit screwdriver, needle-nose pliers, wire stripper, clamps to hold your PCBs 
while soldering, a good table lamp for a well-lit work area, a magnifier that 
will help you inspect small components and solder joints, and a cleaner for 
your soldering iron tip.

Building circuits
When building a circuit, start with a circuit diagram or schematic, which 
tells you how the components are connected to each other. Typically, you 
then construct this circuit on a breadboard, plugging in components and 
connecting them using wires. Once you have tested the circuit to your sat-
isfaction, you might consider moving it to a PCB. Although the breadboard 
is convenient, it looks a bit like a rat’s nest, and all those loose wires can 
make it unreliable for deployment. 

You can either use a general-purpose PCB, which has fixed patterns of 
copper laid out in the bottom, or design your own PCB. The former works 
fine for small circuits. Typically, you solder in your components, use the 
copper connections that are already present, and then hack the rest by 
soldering additional wires as needed. Figure B-3 shows a schematic, the 
breadboard prototype, and the PCB construction for a simple circuit.
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Figure B-3: Going from a schematic to a breadboard prototype to a PCB circuit

If you want a really nice-looking PCB, you can design one yourself and 
have it manufactured inexpensively. Several software packages are available 
for designing your PCB, but the most common (free) ones include EAGLE2 
and KiCad.3 EAGLE software has a Light edition that is free as long you use 
it only for nonprofit applications. It has certain restrictions (for instance, 
only two copper layers, a maximum PCB size of 4×3.2 inches, and one sche-
matic per project), but these shouldn’t be too problematic for a hobbyist. 
EAGLE has a steep learning curve, however, and a somewhat confusing 
interface in my opinion. Before you get started, I recommend that you first 
watch some video tutorials.4

A typical work flow in EAGLE is as follows. First, you create a circuit 
diagram in the schematic editor. For this, you need to add components 

2. CadSoft EAGLE PCB design software, http://www.cadsoftusa.com/eagle-pcb-design-software/.

3. KiCad EDA software suite, http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite/.

4. Jeremy Blum, “Tutorial 1 for Eagle: Schematic Design,” YouTube (June 14, 2012), https://
www.youtube.com/watch?v=1AXwjZoyNno.

http://www.cadsoftusa.com/eagle-pcb-design-software/
http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite
https://www.youtube.com/watch?v=1AXwjZoyNno
https://www.youtube.com/watch?v=1AXwjZoyNno
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used in your circuit and then wire them. A huge number of component 
libraries are available for EAGLE, and chances are that your components 
are already listed in one of those libraries. (EAGLE also lets you create your 
own custom components.) Once you are done with your schematic, EAGLE 
can generate a PCB from it, which brings up a physical representation of 
your components. You then need to place and route your circuit to design 
the connection paths of the copper layer on the PCB. A typical EAGLE 
design is shown in Figure B-4. To the left is the schematic, and to the right 
is the corresponding board. Using EAGLE takes a bit of practice, but the 
YouTube tutorial will get you started.

Figure B-4: A circuit schematic and the matching PCB design created with EAGLE 

Once you have designed the PCB, you need to manufacture it. Some 
techniques for making PCBs can be done at home,5 which can be fun, but a 
more professional technique is to send your design to a PCB manufacturer. 
These companies typically accept a design format called Gerber, and you can 
generate these files right from EAGLE with a little setup.6 Many companies 
make PCBs. One that I have used with good results is OSH Park.7

Once you have your PCB built and components soldered, consider an 
enclosure for your project. Current manufacturing technologies allow you 
to design and build professional-looking enclosures using techniques like 
laser printing and 3D printing. You can use a com bination of 2D8 and 3D9 
software to design your creations. A nice project by Rich Decibels illustrates 
the whole build process discussed here.10 

5. Some techniques for making PCBs at home can be found at https://embeddedinn.wordpress 
.com/tutorials/home-made-sigle-sided-pcbs/.

6. Akash Patel, “Generating Gerber files from EAGLE,” YouTube (April 7, 2010), https://www 
.youtube.com/watch?v=B_SbQeF83XU.

7. https://oshpark.com/.

8. For 2D software, see Inkscape, http://www.inkscape.org/en/.

9. For 3D software, see SketchUp, http://www.sketchup.com/.

10. Rich Decibels, “Laser-Cut Project Box Tutorial,” Ponoko (August 9, 2011), http://support 
.ponoko.com/entries/20344437-Laser-cut-project-box-tutorial/.

https://embeddedinn.wordpress.com/tutorials/home-made-sigle-sided-pcbs/
https://embeddedinn.wordpress.com/tutorials/home-made-sigle-sided-pcbs/
https://www.youtube.com/watch?v=B_SbQeF83XU
https://www.youtube.com/watch?v=B_SbQeF83XU
https://oshpark.com/
http://www.inkscape.org/en/
http://www.sketchup.com/
http://support.ponoko.com/entries/20344437-Laser-cut-project-box-tutorial
http://support.ponoko.com/entries/20344437-Laser-cut-project-box-tutorial
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going further
You can approach practical electronics from two angles. The first is from 
the ground up, where you learn to put together simple circuits, learn about 
analog and digital circuits, and eventually go on to learn about micro-
controllers and interfacing circuits with computers. The other approach 
is from the programming angle, where you start with hardware-friendly 
boards like the Arduino and the Raspberry Pi and then learn about cir-
cuits by building sensors and actuators for these boards. Both approaches 
are fine, and most of the time you will likely find yourself somewhere in 
between. 

I wish you grand success with your electronics projects, and once you 
build something, I hope you will take the time to document it and share it 
with the world. On websites like Instructables (http://www.instructables.com/), 
you can share your projects or find inspiration from projects by other 
DIYers around the globe.

http://www.instructables.com/


C
r a s P B e r r y  P i  

t i P s  a n d  t r i C k s

As you learned in Chapter 14, the 
Raspberry Pi is a full computer with an 

operating system, which means it requires 
some setup procedures before you can start 

using it. I covered basic setup in that project, but here 
are some additional tips and tricks to prepare the Pi 
for your projects.

setting up wi-fi
In Chapter 14, I recommended using the built-in WiFi Config utility to set 
up Wi-Fi on your Raspberry Pi. However, there’s a quicker way to do the same 
thing using the command line. First, enter the following in the terminal to 
bring up the configuration file in the nano editor:

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf
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This is what my file looks like:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
    ssid=your-WiFi-network-name
    psk=your-password
    proto=RSN
    key_mgmt=WPA-PSK
    pairwise=TKIP
    auth_alg=OPEN
}

Edit the contents of your file and set ssid and psk to match your Wi-Fi set-
tings. If the whole network section is missing, enter the settings (filling in 
the details that match your own Wi-Fi setup).

checking whether your Pi Is connected
You can use the ping command from another computer to check whether 
your Pi is connected to the local network. Here is what a ping session 
looks like:

$ ping 192.168.4.32
PING 192.168.4.32 (192.168.4.32): 56 data bytes
64 bytes from 192.168.4.32: icmp_seq=0 ttl=64 time=13.677 ms
64 bytes from 192.168.4.32: icmp_seq=1 ttl=64 time=8.277 ms
64 bytes from 192.168.4.32: icmp_seq=2 ttl=64 time=9.313 ms
--snip--

This ping output shows the number of bytes sent and the time it took 
to get a reply. If you see the message "Request timeout..." instead, then you 
know your Pi is not connected to the network.

Preventing the wi-fi adapter from going to sleep
If you are unable to ping your Pi or SHH into it after a while, your USB Wi-Fi 
adapter may have gone to sleep. You can prevent this from happening by 
disabling power management. First, use this command to open the file that 
controls power management:

$ sudo nano /etc/modprobe.d/8192cu.conf
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Then add the following to this file:

# disable power management
options 8192cu rtw_power_mgnt=0

Reboot your Pi and the Wi-Fi adapter should stay awake now.

Backing up your code and data from the Pi
As you put more and more code on your Raspberry Pi, you need a way to 
back up your files. rsync is a great utility that synchronizes files between two 
folders, even if they exist on different machines on a network. The rsync 
utility is extremely powerful, so do not meddle with it unless you are pay-
ing attention—or else you might end up deleting your original files. If you 
are playing around with it for the first time, back up your test files first and 
use the -n, or “dry run,” flag. That way, rsync only tells you what it would do 
without actually doing it, and you have a chance to get comfortable with the 
program without accidentally deleting anything. Here is my script to back 
up my code directory (recursively) from the Raspberry Pi onto my computer 
running OS X:

#!/bin/bash
echo Backing up RPi \#1...

# set this to Raspberry Pi IP address
PI_ADDR="192.168.4.31"

# set this to the Raspberry Pi code directory
# note that the trailing slash (/) is important with rsync
PI_DIR="code/"

# set this to the local code (backup) directory
BKUP_DIR="/Users/mahesh/code/rpi1/"

# run rsync
# use this first to test: 
# rsync -uvrn pi@$PI_ADDR:$PI_DIR $BKUP_DIR
rsync -uvr pi@$PI_ADDR:$PI_DIR $BKUP_DIR

echo ...
echo done.

# play sound (for OS X only)
afplay /System/Library/Sounds/Basso.aiff  

Modify this code to match your directories. For Linux and OS X users, 
rsync is already built in. Windows users can try grsync.1

1. You can download grsync—an rsync port for Windows—from http://grsync-win.sourceforge.net/.

http://grsync-win.sourceforge.net/
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Backing up your entire Pi os
Backing up the OS on your Pi is a good idea. That way, if the filesystem 
on your SD card gets corrupted as a result of improper shutdown, you can 
quickly rewrite the OS to the SD card without having to go through the 
whole setup. You can also use your backup for cloning your existing install 
on to another Pi. One solution, posted on StackExchange,2 involves using 
the dd utility on Linux and OS X or the Win32 Disk Imager software on 
Windows.

logging In to your Pi with ssh
In Chapter 14, I discussed how you can conveniently use SSH to log in 
to your Pi and work. If you do this not only frequently but also from the 
same computer, you’ll probably find it annoying to enter the password every 
single time. With the ssh-keygen utility that comes with SSH, you can set up 
a public/private key scheme so you can securely log in to your Pi without 
entering the password. For OS X and Linux users, follow the next procedure. 
(For Windows users, PuTTY lets you do something similar.3) From a termi-
nal on your computer, enter the following, modifying your Pi’s IP address 
as needed:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/xxx/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/xxx/.ssh/id_rsa.
Your public key has been saved in /Users/xxx/.ssh/id_rsa.pub.
The key fingerprint is:
--snip--

Now, copy this key file to the Pi:

$ scp ~/.ssh/id_rsa.pub pi@192.168.4.32:.ssh/
The authenticity of host '192.168.4.32 (192.168.4.32)' can't be established.
RSA key fingerprint is f1:ab:07:e7:dc:2e:f1:37:1b:6f:9b:66:85:2a:33:a7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.4.32' (RSA) to the list of known hosts.
pi@192.168.4.32's password:
id_rsa.pub                                    100%  398     0.4KB/s   00:00

2. You’ll find instructions for backing up your Raspberry Pi’s SD card on Stack Exchange. 
“How do I backup my Raspberry Pi?” StackExchange, http://raspberrypi.stackexchange.com/
questions/311/how-do-i-backup-my-raspberry-pi/.

3. “How to Create SSH Keys with PuTTY to Connect to a VPS,” DigitalOcean (July 19, 2013), 
https://www.digitalocean.com/community/tutorials/how-to-create-ssh-keys-with-putty-to-connect-to-a-vps/.

http://raspberrypi.stackexchange.com/questions/311/how-do-i-backup-my-raspberry-pi
http://raspberrypi.stackexchange.com/questions/311/how-do-i-backup-my-raspberry-pi
https://www.digitalocean.com/community/tutorials/how-to-create-ssh-keys-with-putty-to-connect-to-a-vps
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Then, log in to the Pi:

$ ssh pi@192.168.4.32
pi@192.168.4.32's password:

$ cd .ssh
$ ls
id_rsa.pub  known_hosts

$ cat id_rsa.pub >> authorized_keys
$ ls
authorized_keys  id_rsa.pub  known_hosts
$ logout

The next time you log in to the Pi, you won’t be asked for a password. 
Also, note that I am using an empty passphrase in ssh-keygen, which is not 
secure. This setup may be fine for Raspberry Pi hardware projects in which 
you aren’t very concerned about security, but for further discussion on 
working with SSH passphrases, see “Working with SSH Key Passphrases,”  
a helpful GitHub article.4

using the raspberry Pi camera
If you want to take pictures with your Pi, a dedicated camera module is 
available.5 The module has a camera with a fixed focal length and focus, 
and the camera supports both image capture (5 megapixels) and video 
capture (1080 pixels at 30 frames/second). It connects to your Pi via a rib-
bon cable. Once you install the camera module, you can use the  raspistill 
command to take photos or videos. Make sure camera support is enabled 
when you first boot up your Pi. Before you install the camera, take a look at 
the installation video.6 This video also covers using the raspistill command. 

enabling sound on your Pi
The Raspberry Pi comes with an audio output jack. If you are unable to get 
any sound on your Pi, you may need to install ALSA utilities. The installa-
tion is covered by an informative page by CAGE Web Design.7

4. “Working with SSH Key Passphrases,” GitHub Help, https://help.github.com/articles/working 
-with-ssh-key-passphrases/.

5. Refer to the product page for the Raspberry Pi camera module, http://www.raspberrypi.org/
product/camera-module/.

6. TheRaspberryPiGuy, “Raspberry Pi—Camera Tutorial,” YouTube (May 26, 2013), https://
www.youtube.com/watch?v=T8T6S5eFpqE.

7. “Raspberry Pi—Getting Audio Working,” CAGE Web Design (February 9, 2013), http://
cagewebdev.com/index.php/raspberry-pi-getting-audio-working/.

https://help.github.com/articles/working-with-ssh-key-passphrases
https://help.github.com/articles/working-with-ssh-key-passphrases
http://www.raspberrypi.org/product/camera-module/
http://www.raspberrypi.org/product/camera-module/
https://www.youtube.com/watch?v=T8T6S5eFpqE
https://www.youtube.com/watch?v=T8T6S5eFpqE
http://cagewebdev.com/index.php/raspberry-pi-getting-audio-working/
http://cagewebdev.com/index.php/raspberry-pi-getting-audio-working/
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making your Pi talk
Once the sound is working on your Pi, getting your Pi to talk isn’t that hard. 
First, you need to install pyttsx, which is a Python text-to-speech library.8 
Install it as follows:

$ wget https://pypi.python.org/packages/source/p/pyttsx/pyttsx-1.1.tar.gz
$ gunzip pyttsx-1.1.tar.gz
$ tar -xf pyttsx-1.1.tar
$ cd pyttsx-1.1/
$ sudo python setup.py install

Then you need to install espeak, as shown here:

$ sudo apt-get install espeak

Now connect speakers to your Pi’s audio jack and run this code:

import sy:
import pyttsx

# main() function
def main():
    # use sys.argv if needed
    print 'running speech-test.py...'
    engine = pyttsx.init()
    str = "I speak. Therefore. I am.  "
    if len(sys.argv) > 1:
        str = sys.argv[1]
    engine.say(str)
    engine.runAndWait()

# call main
if __name__ == '__main__':
    main()

making hdmI work
You can plug your Raspberry Pi in to your monitor or TV using an HDMI 
cable. To ensure it works the first time you boot the Pi, open the Pi’s SD card 
in your computer and edit config.txt in the top-level directory, as shown here:

hdmi_force_hotplug=1

Now, when your Pi boots, you should be able to see the output via HDMI.

8. You’ll find the GitHub repository for pyttsx, a Python text-to-speech library, at https://
github.com/parente/pyttsx/.

https://github.com/parente/pyttsx
https://github.com/parente/pyttsx
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making your Pi mobile
You can always use a power adapter for your Raspberry Pi. At some point, 
however, you might want to make your Pi mobile without the hassle of 
wires. For this, you need a battery pack. One option that works nicely is a 
rechargeable battery pack with a compatible micro USB output. I’ve had 
great results with the Anker Astro Mini 3000mAh External Battery, which 
can be found online for about $20.

checking your raspberry Pi hardware version
Raspberry Pi comes in several flavors. You can check the hardware version 
of your Pi by logging in to your Pi and entering this in a terminal:

$ cat /proc/cpuinfo

Here is what the output looks like on my terminal:

processor : 0
model name : ARMv6-compatible processor rev 7 (v6l)
BogoMIPS : 2.00
Features : swp half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7

Hardware : BCM2708
Revision : 000f
Serial : 00000000364a6f1c

To understand the revision number, refer to the hardware revision 
 history table at http://elinux.org/RPi_HardwareHistory. In my case, I have 
the Model B, with PCB Rev 2.0, made in Q4 2012.

http://elinux.org/RPi_HardwareHistory




Symbols
2D slices, 192, 196
3D graphics pipeline, 136
3D printing, 309
3D textures, 193
3D transformations, 137–139
8-bit images, 91
16-bit resolution, of sound, 59, 62
555 IC, 305
@ syntax, 280
% (modulus operator), 46
// operator, 6
* operator, 8

a
Abbot, Edwin, A., 131
Adafruit_Python_DHT library, 274, 279
ADC (analog-to-digital converter), 237
AJAX (Asynchronous JavaScript and 

XML) framework, 280
algorithmic complexity, 61
alpha channel, 164
amplitude, 58
analog-to-digital converter (ADC), 237
animation class, matplotlib module, 244
Arduino, 236, 249

analog data, 241
analogRead, 240
analogWrite, 261
ATmega328, 237
bootloader, 237
controlling motors, 260
delay, 241
digitalWrite, 260
ecosystem, 237–239
hardware, 237
loop, 240, 259
serial communications, 241
Serial Monitor, 238
setup, 240, 258

sketches, 238
Uno, 236–237, 254

argparse module, 10, 30, 48, 64, 244, 265
add_argument, 30, 265

group, 10
ArgumentParser, 10, 30, 80, 95, 110, 

125, 244, 265
parse_args, 10, 30

artificial life. See Conway’s Game of Life
ASCII art, 89–90

aspect ratio, 91
brightness, 91, 92

averaging, 93
command line options, 95
font, 91
generating, 90–92
ramp, 91, 92
tiles, 91
writing to text file, 95

aspect ratio, 91, 138
assert method, 108
Asynchronous JavaScript and XML 

(AJAX) framework, 280
Atmel AVR, 236
Audacity, 59
audio signal, 253
autostereograms, 117

command line options, 125
creating, 123–125
creating tiled image, 122–123
depth map, 120
depth perception, 119, 120
example of, 118, 128
linear spacing, 118, 119
random dots, 122
repeating patterns, 119
repeating a tile, 121–122
repeat interval, 124
wall-eyed viewing, 119

average color, 103
avoiding loops, 77

i n d e x
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B
backing up Raspberry Pi

code, 313
OS, 314

base, 306
battery, 306
battery pack, 256
Berra, Yogi, 87
billboarding, 160, 165–166
blending, 164

of 3D volumetric data, 192
Open GL, 164

Boids simulations, 71
adding a boid, 79–80
animation, 81
boundary conditions, 74–75
drawing, 75–76
initial conditions, 73
limiting vector magnitude, 81
obstacle avoidance, 86
rules, 72, 77–79
scattering, 80
tiled boundary conditions, 74
time step, 81

bootloader, 237
Bottle web framework, 274, 278, 280
breadboard, 236, 239, 284, 304, 307

C
camera, Raspberry Pi, 315
capacitance, 305
capacitor, 305
cellular automaton, 41
central processing unit (CPU), 133
centroid, 79
circuit diagram, 307
collections module, 61
collector, 306
color cube, 194
color representation, 195
command line arguments.  

See argparse module
computer-generated swarms.  

See Boids simulations
computer simulations. See Boids 

simulations; Conway’s 
Game of Life; Karplus-
Strong algorithm

config.txt, 316
constant time operation, 61
continuity, circuit, 307
Conway, John, 41
Conway’s Game of Life, 41

boundary conditions, 43–44
cells, 42
glider, defining, 46
Gosper Glider Gun, 52
initial conditions, 45–46
patterns

blinker, 51, 52
block, 51, 52
glider, 51, 52
loaf, 51, 52

rules, 42, 44
toroidal boundary conditions, 

43, 46–47
CPU (central processing unit), 133
cpuinfo, 317
CT scan, 191

D
DC motor, 250
dd utility, 314
decorators, 280
depth encoding, 120
depth map, 120
depth perception, 119
deque class, 61, 241

appendleft, 242
pop, 242

deque container, 242
example, 61
ring buffer, 62

DHT11, 273, 274. See also weather 
monitor

dictionaries, 5
items method, 6

diodes, 305
Document Type Declaration (DTD), 5
double buffering, 146

E
EAGLE software, 308
electrical waveform, 307
Embedded PostScript (EPS), 29
emitter, 306
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enclosure, 309
epitrochoids, 20
EPS (Embedded PostScript), 29
equation of motion, particle  

systems, 162
espeak, 316
Extensible Markup Language (XML), 4
extracting duplicate tracks, 7

F
face culling, 195
farad, 305
far plane, 138
fast Fourier transform. See FFT
FBO (frame buffer objects), 195
FFT (fast Fourier transform), 252, 307

amplitude, 252
example, 253
frequency, 253
sampling rate, 254

field of view, 138
file handles, 105
fixed-function graphics pipeline, 135
flocking behavior. See Boids simuations
flot library, 274

adding interactivity with, 290
installing, 279
plotting with, 281–282

flux, 307
fountain particle systems, 160

animation, 166
Camera class, 173–174
clipping, 170
equation of motion, 162
fragment shader, 171
gravity, 162
initial velocity, 163
keyboard handler, 185
mathematical model, 161
parabola, 161
particle velocity, 162
random velocities, 168
spherical coordinates, 163
time lag, 163, 168
vertex shader, 169–171

fractions module, 24
fragment shader, 136
frame buffer objects (FBO), 195
frequency, 55

fundamental, 56, 57

G
Game of Life. See Conway’s Game 

of Life
GCD (greatest common divisor), 21
gcd method, 24
geometric primitive, 138
Gerber, 309
GL_CCW, 196
GLFW, 134, 196, 227

glfwCreateWindow, 143, 183
glfwGetTime, 145, 185
glfwInit, 143, 183
glfwMakeContextCurrent, 143, 183
glfwPollEvents, 145, 186
glfwSetKeyCallback, 144, 184
glfwSetMouseButtonCallback, 144, 184
glfwSetTime, 145
glfwSetWindowSizeCallback, 144, 184
glfwSwapBuffers, 145, 186
glfwTerminate, 145, 186
glfwWindowHint, 143, 183
glfwWindowShouldClose, 145, 185
keyboard events, 144
window resizing events, 144

GL_QUAD, 136
GLSL (OpenGL Shading 

Language), 191–192
clamp method, 170
compiling, 140
computing position, 149
discard method, 150
example, 139
float, 169
fragment shader, 136, 140, 171
gl_FragColor, 201
gl_FragCoord, 215
gl_Position, 139, 170, 201, 214
in, 139, 169
length, 215
linking, 140
mat4, 139, 200, 214
mod method, 170
normalize, 215
out, 140, 169
rasterization, 140
sampler2D, 214
sampler3D, 214
setting fragment color, 150
shader, 133



322   Index

GLSL (OpenGL Shading Language), 
continued

texture, 215
texture2D, 171
uniform, 139, 169, 200, 214
vec2, 169, 214
vec3, 139, 169
vec4, 139, 200, 214
vertex shader, 136, 149, 169–171

glTexImage3D, 198
GL_TRIANGLES, 195
GL_TRIANGLE_STRIP, 141
GND (ground) connection, 239
graphics processing unit (GPU), 

133, 191
grayscale

images, perceiving, 90
values, 90

greatest common divisor (GCD), 21
ground (GND) connection, 239
guitar, 56

H
harmonics, 58
hdmi_force_hotplug, 316
high-definition multimedia interface 

(HDMI), 273, 316
histograms, 5, 10
homogeneous coordinates, 138
hot glue, 254
humidity sensor. See DHT11; weather 

monitor
hypotrochoid, 20

I
IC (integrated circuit), 304–305, 306
ICSP (in-circuit serial 

programming), 237
illusions. See autostereograms
image based rendering, 192
in-circuit serial programming 

(ICSP), 237
integrated circuit (IC), 304–305, 306
iTunes playlists, parsing

collecting track statistics, 8–9
command line options, 10–11
plotting track statistics, 9–10

J
JavaScript Object Notation (JSON) 

object, 285
jQuery library, 280

and flot, 281
JSON (JavaScript Object Notation) 

object, 285

K
Karplus-Strong algorithm, 57–59

low-pass filter, 58
KiCad software, 308

L
laser, 249

patterns, generating, 250–253
pointer, 250

laser printing, 309
LDR (light-dependent resistor), 239, 

304, 305
LED (light-emitting diode), 289, 305
light intensity, 240
light sensor, 304
linear spacing, 118, 119
list comprehension, 31
loops, avoiding, 77
low-pass filter, 58
luminance, 93

M
magnitude, of vectors, 73

limiting, 81
major scale, 60
mapping, grayscale values to ASCII 

characters, 90
matplotlib library, 5, 44, 65

animation, 44, 48
FuncAnimation, 76

axes, 243
figure, 243
imshow, 44, 45
interpolation, 44
mouse button press, 79
mpl_connect, 79
pyplot, 9
set_data, 243

matrix multiplication, 138
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medical data, 193
metal-oxide- semiconductor field-effect 

transistor (MOSFET),  
256, 306

microcontroller, 310
microfarad, 305
min method, 122
minor pentatonic scale, 60
mirrors, 250, 254–255
modelview matrix, 201
modelview transformations, 138
modulus (%) operator, 46
MOSFET (metal-oxide- semiconductor 

field-effect transistor),  
256, 306

motor control, 251–252
MRI, 191
multimeter, 307
musical scales, 60

N
N -body simulation, 72
nearest neighbor search problem, 116
near plane, 138
normal vectors, 165–166
numpy library, 104, 142

abs, 263
arrange, 59, 168
arrays, 44, 48, 147

applying operations to 
elements, 9

concatenate method, 79, 198
repeat, 168
reshape, 46, 76, 93, 105
shape, 93, 105
slice, 46
sum, 77
zeros, 46, 48

average, 93, 105
broadcasting, 73
cross, 172
fft, 263
frombuffer, 263
image.crop, 94
linalg.norm, 172
optimization, 77
random module

choice, 45, 64
rand, 73

sin, 59
sum, 263

O
ohms, 305
OpenGL, 134

3D graphics pipeline, 136
3D transformations, 137–139

modelview, 138
projection, 138

alpha blending, 164
alpha channel, 164
billboarding, 165
binding, 134
blending, 164
clamp texture, 156
color representation, 195
context, 142
depth buffer, 173
displaying, 142
face culling, 195
geometric primitive, 137
glActiveTexture, 148, 172, 203
glBindBuffer, 147, 167, 203, 220
glBindFramebuffer, 203
glBindRenderbuffer, 204
glBindTexture, 148, 156, 173, 

198, 203
glBindVertexArray, 147, 148, 167, 173, 

203, 206, 220
glBlendFunc, 173
glBufferData, 147, 167, 203, 220
GL_CCW, 196, 206
glCheckFramebufferStatus, 204
glClear, 145, 185
glClearColor, 143, 183
GL_CULL_FACE, 205
glDepthMask, 173
glDrawArrays, 148, 173
glDrawElements, 206
GL_ELEMENT_ARRAY_BUFFER, 203
glEnable, 143, 173
glEnableVertexAttribArray, 147, 220
glFramebufferRenderbuffer, 204
glFramebufferTexture2D, 204
glfwSwapBuffers, 145
glGenBuffers, 147, 167, 203, 220
glGenFramebuffers, 203
glGenRenderbuffers, 203
glGenTextures, 156, 198, 203
glGenVertexArrays, 147, 167, 203, 220
glGetUniformLocation, 146
glPixelStorei, 156, 198
GL_POINTS, 163
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OpenGL, continued
GL_QUAD, 136
glRenderbufferStorage, 204
GLSL. See GLSL
glTexImage2D, 156, 204
glTexImage3D, 198
glTexParameterf, 156, 198
glTexParameteri, 203
GL_TEXTURE0, 173
GL_TRIANGLES, 195
GL_TRIANGLE_STRIP, 137, 141
glUniform1f, 148
glUniform1i, 148, 173
glUniformMatrix4fv, 148, 172, 205
glUseProgram, 146, 148
glVertexAttribPointer, 147, 220
glViewport, 143, 183
linear filtering, 156
rasterization, 136
sparks, drawing, 163–164
state machine, 134
texture mapping, 141
texture unit, 148
vertex array object (VAO), 141
vertex buffer object (VBO),  

141, 168
vertex shader, 169

OpenGL Shading Language. See GLSL
orthographic projection, 138
oscilloscope, 307
os module

listdir, 104, 197
path, 65

abspath, 104, 197
join, 104, 197

overtones, 56

P
parabola, 161
parallel processing, 133
parametric equations, 18

for a circle, 19
for a Spirograph, 19–22

particle systems, 159. See also fountain 
particle systems

pass keyword, 7
pattern, laser, 251
PCB (printed circuit board), 305

manufacturers, 309

pentatonic scale, 60
performance analysis, 78
peripherals, recommended for 

Raspberry Pi, 276
perspective projection, 138, 139
photomosaics, 101

averaging color values, 103, 
105–106

command line options, 110
creating, 108–109
grid, 102, 106
matching images, 104, 106–107
measuring distance, 104
reading input images, 104
RGB values, 104, 107
splitting target image, 103, 106

photoresistor, 239, 304, 305
--piano option, 69
Pillow module, 23, 92, 104, 121
PIL. See Python Imaging Library (PIL)
ping command, 312
playlists. See iTunes playlists, parsing
p-list (property list) files, 5
plistlib module, 5

readPlist, 6
position vectors, 77
power adapter, 317
power management, Raspberry Pi, 312
power supply, 306
printed circuit board (PCB), 305

manufacturers, 309
Processing, 238
projection matrix, 201
projection transformations, 138
property list (p-list) files, 5
prototyping, 304
public/private key, 314
PuTTY, 314
PWM pins, 252
pyaudio module, 261

get_device_count, 261
get_device_info_by_index, 261
open, 262
paInt16, 262
stream, 263

pygame module, 61, 63
event, 69
mixer, 63
type, 69

PyOpenGL module, 142, 196
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Python Imaging Library (PIL)
convert method, 93
Image, 105, 156

convert, 123
copy, 124
crop, 94, 106
load, 105, 124
new, 107, 121, 122
open, 93, 104, 156, 197
paste, 108, 121
pixel access, 124
size, 106, 124
thumbnail, 110

ImageDraw, 122
luminance, 93

pyttsx library, 316

r
radians, 163
random module

choice, 65
hideturtle, 29
randint, 27, 63, 122
random, 169
uniform, 27

range method, 22
Raspberry Pi, 273, 311

ALSA utilities, 315
audio output jack, 315
backing up

code, 313
OS, 314

camera, 315
config.txt, 316
configuring for Python, 277
connecting via SSH, 279
cpuinfo, 317
espeak, 316
hardware version, 317
HDMI, 316
hdmi_force_hotplug, 316
models, 275
power adapter, 317
power management, 312
pyttsx library, 316
raspistill command, 315
rechargeable battery pack, 317
recommended peripherals, 276
rsync utility, 313
setting up, 276

programming environment, 
278–279

Wi-Fi, 277–278
shutting down, 282–283
speech API, 316
tips, 311
weather monitor. See weather 

monitor
WiFi Config, 311
wpa_supplicant, 311

Raspbian, 277
raspistill command, 315
rasterization, 136
raw_input, 266
ray, 192
ray casting, 195–196
rechargeable battery pack, 317
rectifiers, 305
reflection, 250
relative paths, 105
resistance, 305
resistor, 239, 305
resistor divider, 240
resolution 

image, 102
sound, 59

Reynolds, Craig, 71
RGB values, 104
ring buffer, 57, 61
rotation matrix, 166
rsync utility, 313

S
sampling rate, 59
scatter plots, 5
schematic, 307
scipy module

arrays, squareform, 77
spatial.distance module, 77

semiconductor, 304
semitones, 60
serial module, 242

close, 243, 265, 266
flush, 243
generating laser patterns, 250
readline, 243
Serial, 242, 266
write, 265, 266

Serial Monitor, 241
serial port string, 266



326   Index

set.intersection method, 8
set object, 8
shaders, 133, 139

fragment, 140
vertex, 139–140

signature, email, 89
sine wave, 55, 59
sketches, 238, 240. See also Arduino
soldering, 307
sound

amplitude, 58
frequency, 55
fundamental frequency, 56
overtones, 56

Sparkfun TB6612FNG, 251
connecting, 257

spectral plot, 56
speech API, 316
spherical coordinates, 163
split, 243
Spirographs. See also turtle module

equations, 19–22
periodicity, 21

SSH, 314
ssh-keygen utility, 314
state machine, 134
struct.pack, 265, 266
surface-mounted component, 305
Suzuki, Shunryu, 1
system resources, 105

t
TB6612FNG, SparkFun, 251

connecting, 257
temperature sensor. See DHT11
text-based graphics. See ASCII art
texture mapping, 141–142
texture unit, 148
through-hole component, 305
timeit module, 78
time module, sleep, 64
timing, 78
tkinter module, 23

canvas.postscript, 29
tones, 60
transistor, 306
translation matrix, 138
turn-on voltage, for LEDs, 305
turtle module, 22

down, 22
drawing a circle, 22

drawing a Spirograph, 25
hiding the cursor, 29
listen, 30
mainloop, 22
onkey, 30
ontimer, 27
setpos, 22
setting the cursor, 23–24
setup, 30
showturtle, 29
title, 30
up, 22
window_height, 26
window_width, 26

V
VAO (vertex array object), 141
VBO (vertex buffer object), 141
vectors

magnitude of, 73
limiting, 81

normal, 165
position, 77
velocity, 73

velocity vectors, 73
vertex array object (VAO), 141
vertex buffer object (VBO), 141
vertex shader, 136
volume rendering, 191

2D slices, 196, 220
computing texture 

coodinates, 222
fragment shader, 223
keyboard handler, 223–224
rendering, 221
vertex shader, 222

3D texture coordinates, 193
color cube, 194

computing rays, 195
defining, 202
drawing, 205–206
drawing front-faces, 205
geometry definition, 201–202
rendering back-faces, 204–205
setting up FBO, 203–204

keyboard handler, 228
maximum intensity projection 

(MIP), 232
ray casting, 195–196

algorithm, 212
blending, 216
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computation, 216
drawing, 213
fragment shader, 214–216
initialization, 212
vertex shader, 214

reading data, 197–199
resize handler, 206
scaling, 232

volumetric data, 191

W
wave module, 59
WAV file format, 59–60

creating, 59
playing, 63
writing, 62–63

weather monitor
exporting sensor data, 295
hardware, 283–284
HTML structure, 286
initating data sensor requests, 

286–287
LED checkbox, 289
main function, 284–285
plotting data, 285–288, 295
retrieving sensor data, 287–288
sample data, 294
schematic for, 283
sensor data requests, 285
update method, 288–289

Wi-Fi adapter sleep mode, 312
Wi-Fi command line setup, 311
WiFi Config utility, 311
Win32 Disk Imager, 314
wire, 305
Wiring, 238
wpa_supplicant, 311

X
XML (Extensible Markup Language), 4

Z
zip method, 74
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$29.95 ($34.95 CDN)

Python is a powerful programming language that’s 
easy to learn and fun to play with. But once you’ve 
gotten a handle on the basics, what do you do next?

Python Playground is a collection of imaginative 
programming projects that will inspire you to use 
Python to make art and music, build simulations of 
real-world phenomena, and interact with hardware 
like the Arduino and Raspberry Pi. You’ll learn to 
use common Python tools and libraries like numpy, 
matplotlib, and pygame to do things like:

• Generate Spirograph-like patterns using parametric 
equations and the turtle module

• Create music on your computer by simulating 
frequency overtones 

• Translate graphical images into ASCII art

• Write an autostereogram program that produces 
3D images hidden beneath random patterns

• Make realistic animations with OpenGL shaders 
by exploring particle systems, transparency, and 
billboarding techniques

• Construct 3D visualizations using data from CT and 
MRI scans

• Build a laser show that responds to music by hooking 
up your computer to an Arduino

Programming shouldn’t be a chore. Have some solid, 
geeky fun with Python Playground.

A B O U T  T H E  A U T H O R

Mahesh Venkitachalam is a software engineer with 
two decades of programming experience. He has 
nurtured a passion for technology since the eighth 
grade, which he channels into his popular electronics 
and programming blog, electronut.in.
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The projects in this book are

compatible with Python 2 and 3.
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